Advertisement

The association of sleep-disordered breathing and white matter hyperintensities in heart failure patients

  • Chooza Moon
  • Barbara B. Bendlin
  • Kelsey E. Melah
  • Lisa C. Bratzke
Original Article
  • 17 Downloads

Abstract

Heart failure patients often manifest white matter hyperintensites on brain magnetic resonance imaging (MRI). White matter hyperintnsities have also been linked with cognitive problems in patients with heart failure. Sleep disordered breathing may contribute to structural brain changes in heart failure. The purpose of this study was to test the extent to which the apnea hypopnea index is associated with global and regional white matter hyperintensities, and is a moderating factor in the relationship between age and white matter hyperintensites. A total of 28 HF patients [mean age (SD) = 67.89 (5.8)] underwent T1-weighted and T2FLAIR MRI and a home sleep monitoring study. The apnea hypopnea index cut off of 10 was used to compare between higher and lower risks of sleep disordered breathing. Regression analysis was used to test the association between apnea hypopnea index and both global and regional white matter hyperintensities. The interaction term was entered to identify the moderation effect. Apnea hypopnea index was associated with higher regional white matter hyperintensities but not global white matter hyperintensities. There was a significant interaction between the apnea hypopnea index and age, such that older participants with the apnea hypopnea index ≥10 showed greater regional white matter hyperintensities than those with the apnea hypopnea index <10. The results of this preliminary study indicate that a higher apnea hypopnea index is associated with more white matter hyperintensities. The age-related white matter hyperintensities appear to be exacerbated by apnea hypopnea index in our individuals with heart failure. Future studies are needed to further investigate the underlying mechanisms.

Keywords

Sleep apnea syndrome Heart failure White matter hyperintensities Structural MRI 

Abbreviations

FOV

field of view

HF

heart failure

ICBM

The International Consortium for Brain Mapping

ICV

Intracranial volume

LVEF

left ventricular ejection fraction

MRI

magnetic resonance imaging

MNI

Montreal Neurological Institute

AHI

apnea hypopnea index

SDB

sleep disordered breathing

SPM8

statistical parametric mapping 8

T2FLARE

T2 Fluid attenuation inversion recovery

TE

echo time

TI

inversion time

TR

repetition time

WMH

white matter hyperintensities

WMHp

white matter hyperinensity percent

Notes

Acknowledgements

Authors thank to members of the Wisconsin Alzheimer's Diesease Research Center for advices regarding MRI data acquisition and analysis.

Funding

The project described in this paper was supported by the Sigma Theta Tau Beta-Eta at Large chapter and the National Institute of Nursing Research, award Number R00NR012773 (Brain Alterations and Cognitive Impairment in Older Adults with Heart Failure). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Nursing Research or the National Institutes of Health.

Compliance with ethical standards

Conflict of interest

The authors have indicated no financial conflicts of interest.

References

  1. Alosco ML, Brickman AM, Spitznagel MB, Garcia SL, Narkhede A, Griffith EY, Raz N, Cohen R, Sweet LH, Colbert LH, Josephson R, Hughes J, Rosneck J, Gunstad J (2013a) Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest Heart Fail Greenwich Conn 19(4):E29–E34.  https://doi.org/10.1111/chf.12025 CrossRefGoogle Scholar
  2. Alosco ML, Brickman AM, Spitznagel MB, Griffith EY, Narkhede A, Raz N, Cohen R, Sweet LH, Hughes J, Rosneck J, Gunstad J (2013b) Independent and interactive effects of blood pressure and cardiac function on brain volume and white matter hyperintensities in heart failure. J Am Soc Hypertens 7(5):336–343.  https://doi.org/10.1016/j.jash.2013.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Avci AY, Avci S, Lakadamyali H, Can U (2017) Hypoxia and inflammation indicate significant differences in the severity of obstructive sleep apnea within similar apnea-hypopnea index groups. Sleep Breath 21(3):703–711.  https://doi.org/10.1007/s11325-017-1486-5 CrossRefPubMedGoogle Scholar
  4. Bauer L, Pozehl B (2011) Measurement of cognitive function in chronic heart failure: a feasibility study. Appl Nurs Res 24(4):223–228.  https://doi.org/10.1016/j.apnr.2009.12.002 CrossRefPubMedGoogle Scholar
  5. Bauer L, Johnson JK, Pozehl BJ (2011) Cognition in heart failure: an overview of the concepts and their measures. J Am Acad Nurse Pract 23(11):577–585.  https://doi.org/10.1111/j.1745-7599.2011.00668.x CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bellesi M, de Vivo L, Chini M, Gilli F, Tononi G, Cirelli C (2017) Sleep loss promotes Astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J Neurosci 37(21):5263–5273.  https://doi.org/10.1523/JNEUROSCI.3981-16.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JHY, Alger HM, Wong SS, Muntner P (2017) Heart disease and stroke Statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603.  https://doi.org/10.1161/CIR.0000000000000485 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Ward SLD, Tangredi MM (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the American Academy of sleep medicine. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 8(5):597–619.  https://doi.org/10.5664/jcsm.2172 CrossRefGoogle Scholar
  9. Birdsill AC, Koscik RL, Jonaitis EM, Johnson SC, Okonkwo OC, Hermann BP, LaRue A, Sager MA, Bendlin BB (2014) Regional white matter hyperintensities: aging, Alzheimer’s disease risk, and cognitive function. Neurobiol Aging 35(4):769–776.  https://doi.org/10.1016/j.neurobiolaging.2013.10.072 CrossRefPubMedGoogle Scholar
  10. Bratzke-Bauer LC, Pozehl BJ, Paul SM, Johnson JK (2013) Neuropsychological patterns differ by type of left ventricle dysfunction in heart failure. Arch Clin Neuropsychol 28(2):114–124.  https://doi.org/10.1093/arclin/acs101 CrossRefPubMedGoogle Scholar
  11. Chen H, Lowe AA, Bai Y, Hamilton P, Fleetham JA, Almeida FR (2009) Evaluation of a portable recording device (ApneaLink) for case selection of obstructive sleep apnea. Sleep Breath Schlaf Atm 13(3):213–219.  https://doi.org/10.1007/s11325-008-0232-4 CrossRefGoogle Scholar
  12. Chen H-L, Lu C-H, Lin H-C, Chen PC, Chou KH, Lin WM, Tsai NW, Su YJ, Friedman M, Lin CP, Lin WC (2015) White matter damage and systemic inflammation in obstructive sleep apnea. Sleep 38(3):361–370.  https://doi.org/10.5665/sleep.4490 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Collop NA, Anderson WM, Boehlecke B et al (2007) Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. Portable monitoring task force of the American Academy of sleep medicine. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 3(7):737–747Google Scholar
  14. De Groot JC, de Leeuw F-E, Oudkerk M et al Cerebral white matter lesions and cognitive function: The Rotterdam scan study. Ann Neurol 47(2):145–151.  https://doi.org/10.1002/1531-8249(200002)47:2<145::AID-ANA3>3.0.CO;2-P
  15. de Leeuw F-E, Richard F, de GJC et al (2004) Interaction between hypertension, apoE, and cerebral white matter lesions. Stroke 35(5):1057–1060.  https://doi.org/10.1161/01.STR.0000125859.71051.83 CrossRefPubMedGoogle Scholar
  16. Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341.  https://doi.org/10.1136/bmj.c3666 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ding N, Ni B-Q, Zhang X-L, Huang HP, Su M, Zhang SJ, Wang H (2013) Prevalence and risk factors of sleep disordered breathing in patients with rheumatic valvular heart disease. J Clin Sleep Med 9(8):781–787.  https://doi.org/10.5664/jcsm.2920 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Garde E, Mortensen EL, Krabbe K, Rostrup E, Larsson HB (2000) Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet 356(9230):628–634.  https://doi.org/10.1016/S0140-6736(00)02604-0 CrossRefPubMedGoogle Scholar
  19. Hjelm C, Strömberg A, Arestedt K, Broström A (2013) Association between sleep-disordered breathing, sleep-wake pattern, and cognitive impairment among patients with chronic heart failure. Eur J Heart Fail 15(5):496–504.  https://doi.org/10.1093/eurjhf/hft014 CrossRefPubMedGoogle Scholar
  20. Kasai T, Bradley TD (2011) Obstructive sleep apnea and heart failure: Pathophysiologic and Therapeutic Implications. J Am Coll Cardiol 57(2):119–127.  https://doi.org/10.1016/j.jacc.2010.08.627 CrossRefPubMedGoogle Scholar
  21. Keihaninejad S, Heckemann RA, Fagiolo G, Symms MR, Hajnal JV, Hammers A (2010) A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T). NeuroImage 50(4):1427–1437.  https://doi.org/10.1016/j.neuroimage.2010.01.064 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kibble JD, Halsey CR. Cardiovascular physiology. In: Medical Physiology: The Big Picture. New York, NY: McGraw-hill education; 2015. Accessmedicine.mhmedical.com/content.aspx?aid=1106602247. Accessed September 27, 2017
  23. Kiernan T-EJ, Capampangan DJ, Hickey MG, Pearce LA, Aguilar MI (2011) Sleep apnea and white matter disease in hypertensive patients: a case series. Neurologist 17(5):289–291.  https://doi.org/10.1097/NRL.0b013e31821a25d6 CrossRefPubMedGoogle Scholar
  24. Kim H, Yun C-H, Thomas R (2013) Joseph, et al. obstructive sleep apnea as a risk factor for cerebral white matter change in a middle-aged and older general population. Sleep 36(5):709–715.  https://doi.org/10.5665/sleep.2632 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim LJ, Martinez D, Fiori CZ, Baronio D, Kretzmann NA, Barros HMT (2015) Hypomyelination, memory impairment, and blood–brain barrier permeability in a model of sleep apnea. Brain Res 1597(Supplement C):28–36.  https://doi.org/10.1016/j.brainres.2014.11.052 CrossRefPubMedGoogle Scholar
  26. Kryger MH, Roth T, Dement, WC. Principles and Practice of Sleep Medicine. 5 edition. Saunders; 2010Google Scholar
  27. Kumar R, Woo MA, Macey PM, Fonarow GC, Hamilton MA, Harper RM (2011) Brain axonal and myelin evaluation in heart failure. J Neurol Sci 307(1–2):106–113.  https://doi.org/10.1016/j.jns.2011.04.028 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Launer LJ (2004) Epidemiology of white matter lesions. Top Magn Reson Imaging TMRI 15(6):365–367CrossRefPubMedGoogle Scholar
  29. Lutsey PL, Norby FL, Gottesman RF, Mosley T, MacLehose RF, Punjabi NM, Shahar E, Jack CR, Alonso A (2016) Sleep apnea, sleep duration and brain MRI markers of cerebral vascular disease and Alzheimer’s disease: the atherosclerosis risk in communities study (ARIC). PLoS One 11(7).  https://doi.org/10.1371/journal.pone.0158758 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Macey PM, Kumar R, Woo MA, Valladares EM, Yan-Go FL, Harper RM (2008) Brain structural changes in obstructive sleep apnea. Sleep 31(7):967–977PubMedPubMedCentralGoogle Scholar
  31. Melah K, Moon C, Johnson SC, Bratzke LC (2015) Abstract 18696: regional distribution of cerebral white matter Hyperintensities in HFrEF and HFpEF. Circulation 132(Suppl 3):A18696–A18696Google Scholar
  32. Melah KE, Jankowski B, Moon C, Rivera LA, Wieben O, Johnson SC, Bratzke LC (2016) Reduced middle cerebral artery blood flow is associated with decrements in executive function, attention, and verbal learning and memory in aging individuals with heart failure: a 4D flow MRI study. Alzheimers Dement 12(7, Supplement):P950–P952.  https://doi.org/10.1016/j.jalz.2016.06.1954 CrossRefGoogle Scholar
  33. Minoguchi K, Yokoe T, Tazaki T, Minoguchi H, Oda N, Tanaka A, Yamamoto M, Ohta S, O'Donnell CP, Adachi M (2007) Silent brain infarction and platelet activation in obstructive sleep apnea. Am J Respir Crit Care Med 175(6):612–617.  https://doi.org/10.1164/rccm.200608-1141OC CrossRefPubMedGoogle Scholar
  34. Nair D, Dayyat EA, Zhang SX, Wang Y, Gozal D (2011) Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea. PLoS One 6(5):e19847.  https://doi.org/10.1371/journal.pone.0019847 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nishibayashi M, Miyamoto M, Miyamoto T, Suzuki K, Hirata K (2008) Correlation between severity of obstructive sleep apnea and prevalence of silent cerebrovascular lesions. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 4(3):242–247Google Scholar
  36. Oktay B, Rice TB, Atwood CW Jr et al (2011) Evaluation of a single-channel portable monitor for the diagnosis of obstructive sleep apnea. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 7(4):384–390.  https://doi.org/10.5664/JCSM.1196 CrossRefGoogle Scholar
  37. Pae E-K, Chien P, Harper RM (2005) Intermittent hypoxia damages cerebellar cortex and deep nuclei. Neurosci Lett 375(2):123–128.  https://doi.org/10.1016/j.neulet.2004.10.091 CrossRefPubMedGoogle Scholar
  38. Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9(7):689–701.  https://doi.org/10.1016/S1474-4422(10)70104-6 CrossRefGoogle Scholar
  39. Patel SK, Hanly PJ, Smith EE, Chan W, Coutts SB (2015) Nocturnal Hypoxemia is Associated with white matter Hyperintensities in patients with a minor stroke or transient ischemic attack. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 11(12):1417–1424.  https://doi.org/10.5664/jcsm.5278 CrossRefGoogle Scholar
  40. Polotsky VY, Rubin AE, Balbir A et al (2006) Intermittent hypoxia causes REM sleep deficits and decreases EEG delta power in NREM sleep in the C57BL/6J mouse. Sleep Med 7(1):7–16.  https://doi.org/10.1016/j.sleep.2005.06.006 CrossRefPubMedGoogle Scholar
  41. Pressler SJD (2008) Cognitive functioning and chronic heart failure: a review of the literature (2002-July 2007). J Cardiovasc Nurs May 23(3):239–249.  https://doi.org/10.1097/01.JCN.0000305096.09710.ec CrossRefGoogle Scholar
  42. Pressler SJ, Subramanian U, Kareken D, Perkins SM, Gradus-Pizlo I, Sauvé MJ, Ding Y, Kim JS, Sloan R, Jaynes H, Shaw RM (2010) Cognitive deficits in chronic heart failure. Nurs Res 59(2):127–139.  https://doi.org/10.1097/NNR.0b013e3181d1a747 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ragette R, Wang Y, Weinreich G, Teschler H (2010) Diagnostic performance of single airflow channel recording (ApneaLink) in home diagnosis of sleep apnea. Sleep Breath Schlaf Atm 14(2):109–114.  https://doi.org/10.1007/s11325-009-0290-2 CrossRefGoogle Scholar
  44. Rivera-Rivera LA, Schubert T, Turski P, Johnson KM, Berman SE, Rowley HA, Carlsson CM, Johnson SC, Wieben O (2016) Changes in intracranial venous blood flow and pulsatility in Alzheimer’s disease: a 4D flow MRI study. In: J Cereb blood flow Metab off J Int Soc Cereb blood flow Metab, vol 37, pp 2149–2158.  https://doi.org/10.1177/0271678X16661340 CrossRefGoogle Scholar
  45. Sapin E, Peyron C, Roche F, Gay N, Carcenac C, Savasta M, Levy P, Dematteis M (2015) Chronic intermittent hypoxia induces chronic low-grade Neuroinflammation in the dorsal Hippocampus of mice. Sleep 38(10):1537–1546.  https://doi.org/10.5665/sleep.5042 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A, Hoshi M, Ilg R, Schmid VJ, Zimmer C, Hemmer B, Mühlau M (2012) An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. NeuroImage 59(4):3774–3783.  https://doi.org/10.1016/j.neuroimage.2011.11.032 CrossRefPubMedGoogle Scholar
  47. Sharma S, Mather PJ, Chowdhury A, Gupta S, Mukhtar U, Willes L, Whellan DJ, Malhotra A, Quan SF (2017) Sleep overnight monitoring for apnea in patients hospitalized with heart failure (SOMA-HF study). J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 13(10):1185–1190.  https://doi.org/10.5664/jcsm.6768 CrossRefGoogle Scholar
  48. Veasey SC, Lear J, Zhu Y, Grinspan JB, Hare DJ, Wang SH, Bunch D, Doble PA, Robinson SR (2013) Long-term intermittent hypoxia elevates cobalt levels in the brain and injures white matter in adult mice. Sleep 36(10):1471–1481.  https://doi.org/10.5665/sleep.3038 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vogels RLC, Oosterman JM, van Harten B, Gouw AA, Schroeder-Tanka JM, Scheltens P, van der Flier WM, Weinstein HC (2007) Neuroimaging and correlates of cognitive function among patients with heart failure. Dement Geriatr Cogn Disord 24(6):418–423.  https://doi.org/10.1159/000109811 CrossRefPubMedGoogle Scholar
  50. Woo MA, Macey PM, Fonarow GC, Hamilton MA, Harper RM (2003) Regional brain gray matter loss in heart failure. J Appl Physiol Bethesda Md 1985 95(2):677–684.  https://doi.org/10.1152/japplphysiol.00101.2003 CrossRefGoogle Scholar
  51. Woo MA, Kumar R, Macey PM, Fonarow GC, Harper RM (2009) Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure. J Card Fail 15(3):214–223.  https://doi.org/10.1016/j.cardfail.2008.10.020 CrossRefPubMedGoogle Scholar
  52. Xu W, Chi L, Row BW, Xu R, Ke Y, Xu B, Luo C, Kheirandish L, Gozal D, Liu R (2004) Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 126(2):313–323.  https://doi.org/10.1016/j.neuroscience.2004.03.055 CrossRefPubMedGoogle Scholar
  53. Ylikoski A, Erkinjuntti T, Raininko R, Sarna S, Sulkava R, Tilvis R (1995) White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke J Cereb Circ 26(7):1171–1177CrossRefGoogle Scholar
  54. Yuan L, Wu J, Liu J, Li G, Liang D (2015) Intermittent hypoxia-induced Parvalbumin-Immunoreactive interneurons loss and neurobehavioral impairment is mediated by NADPH-Oxidase-2. Neurochem Res 40(6):1232–1242.  https://doi.org/10.1007/s11064-015-1586-1 CrossRefPubMedGoogle Scholar
  55. Zuccalà G, Pedone C, Cesari M, onder G, Pahor M, Marzetti E, Lo Monaco MR, Cocchi A, Carbonin P, Bernabei R (2003) The effects of cognitive impairment on mortality among hospitalized patients with heart failure. Am J Med 115(2):97–103CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of NursingUniversity of IowaIowa CityUSA
  2. 2.School of NursingUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Wisconsin Alzheimer’s Disease Research Center, Wisconsin Alzheimer’s Institute, School of Medicine and Public HealthUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations