Metabolic Brain Disease

, Volume 33, Issue 5, pp 1733–1742 | Cite as

Neuroinflammation in acute hepatic encephalopathy rats: imaging and therapeutic effectiveness evaluation using 11C-PK11195 and 18F-DPA-714 micro-positron emission tomography

  • Song Luo
  • Xiang Kong
  • Jin Rong Wu
  • Chun Yan Wang
  • Ying Tian
  • Gang Zheng
  • Yun Yan Su
  • Guang Ming Lu
  • Long Jiang ZhangEmail author
  • Gui Fen YangEmail author
Original Article


Neuroinflammation has an important influence in pathogenesis of acute hepatic encephalopathy (AHE). 11C-PK11195 and 18F-DPA-714 targeted to translocator protein (TSPO) have potential application in positron emission tomography (PET) as a molecular probe of neuroinflammation. The aim of this study was to compare these two radiotracers and their effectiveness in detecting neuroinflammation for the imaging of AHE rat models. Furthermore, using the new radiotracer 18F-DPA-714, we analyzed the effectiveness of therapeutic treatment for neuroinflammation in AHE. First, we performed a comparative study of 11C-PK1195 and 18F-DPA-714 PET to image neuroinflammation in AHE rats induced by thioacetamide. Twenty-four rats were divided into either control group (n = 12) or AHE group (n = 12). Next, each group was subdivided depending on the radiotracer used during PET imaging (n = 6). Radiotracer uptake values encompassing the whole brain were compared. Lastly, we used the optimized tracer to monitor anti-neuroinflammation effects in AHE-induced rats. Forty-six rats were divided into four groups: [normal saline (NS) group (n = 13), minocycline (MINO) group (n = 11), dexamethasone (DEXA) group (n = 11), MINO+DEXA group (n = 11)]. 18F-DPA-714 PET was performed and the uptake values were calculated. The rotarod test, biochemical indices, and histopathological examinations were quantitatively measured and compared. AHE rats showed reduced motor ability, elevated ammonia levels, and higher liver function indices (all P < 0.05) with unchanged inflammatory factors (all P > 0.05), compared to control group. Both 11C-PK11195 and 18F-DPA-714 PET can detect neuroinflammation of AHE rats. Behavioral studies showed that MINO and/or DEXA improved the motor ability in AHE rats (P < 0.05); however, no differences were found for liver function or inflammatory markers among the four groups (all P > 0.05). The average uptake values of whole brain and multiple brain areas in the MINO+DEXA group were lower compared to all other groups (all P < 0.05), which was demonstrated by CD11b stains of microglia. Our results show that both 11C-PK11195 and 18F-DPA-714 PET can detect neuroinflammation in AHE-induced rat models. Additionally, the combined use of minocycline and dexamethasone can effectively inhibit neuroinflammation in AHE-induced rats, which can be sensitively monitored by 18F-DPA-714 PET.


Hepatic encephalopathy Positron emission tomography Neuroinflammation Minocycline Dexamethasone 



Positron emission tomography


Acute hepatic encephalopathy


Acute liver failure


Translocator protein








Normal saline


Percentage injected dose per gram


Field of view


Regions of interest


Alanine transaminase


Aspartate transaminase




Tumor necrosis factor alpha






Standard deviation


Analysis of variance



This work were supported by grants from National Natural Science Foundation of China (grants No. 81322020, 81230032, and 81171313 to L.J.Z. and 81401468 to G.F.Y. and 81471644 to G.Z.) and the program B for Outstanding PhD candidate of Nanjing University (No. 201801B055 to X.K.). The authors would like to thank Professor U. Joseph Schoepf, Medical University of South Carolina, USA for his contribution in polishing this manuscript. Besides, they would also like to thank Bo Hua Xu, Yan Wang, Cheng Long Yan, Peng Fang, Shan You Yu, and Chao Xu at the Jiangsu Institute of Nuclear Medicine for their core facility and excellent technical assistance.

Authors contributions

LJZ, GML, and GFY conceived and designed the study. SL and XK carried out the majority of the animal model preparation, data acquisition, drafting and revision of the manuscript. JRW performed the histology analysis and immunoassays. CYW and YT contributed to data analysis and the interpretation of the data. GZ and YYS contributed to the interpretation of the data and revision of the manuscript. All authors read and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

All authors have no conflict of interest to declare.

Supplementary material

11011_2018_282_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 24 kb)
11011_2018_282_Fig1_ESM.png (406 kb)
Supplementary figure S1

Histological findings of the liver gross specimen and H&E staining (original magnification ×100) of control group (A, B) and AHE group (C, D). The liver specimen of a control rat reveals smooth surface of the liver (A) with eumorphis in H&E staining image (B). AHE group rats show acute live injury with diffusion spotty foci in the gross specimen (C). The liver H&E staining image reveals inflammatory infiltration (arrows) with edema and partial necrosis (arrowhead) of liver cells (D). H&E = hematoxylin-eosin; AHE = acute hepatic encephalopathy. (JPG 285 kb) (JPG 285 kb)

11011_2018_282_Fig2_ESM.png (254 kb)
Supplementary figure S2

The representative micrographs showing CD11b immunohistochemistry microglia in basal ganglia of control group (A) and AHE group (B) (original magnification ×400). The microglial cells of control rats show ramified shapes (resting microglia) (A), while AHE rats show ameboid shapes (activated microglia) (B) in basal ganglia. AHE = acute hepatic encephalopathy. (JPG 161 kb)

11011_2018_282_MOESM2_ESM.docx (21 kb)
Supplementary Table S1 (DOCX 21 kb)
11011_2018_282_MOESM3_ESM.docx (22 kb)
Supplementary Table S2 (DOCX 21 kb)
11011_2018_282_MOESM4_ESM.docx (22 kb)
Supplementary Table S3 (DOCX 22 kb)
11011_2018_282_MOESM5_ESM.docx (22 kb)
Supplementary Table S4 (DOCX 22 kb)
11011_2018_282_MOESM6_ESM.docx (28 kb)
Supplementary Table S5 (DOCX 28 kb)


  1. Agusti A, Cauli O, Rodrigo R, Llansola M, Hernández-Rabaza V, Felipo V (2011) p38 MAP kinase is a therapeutic target for hepatic encephalopathy in rats with portacaval shunts. Gut 60:1572–1579CrossRefPubMedGoogle Scholar
  2. Agusti A, Dziedzic JL, Hernandez-Rabaza V, Guilarte TR, Felipo V (2014) Rats with minimal hepatic encephalopathy due to portacaval shunt show differential increase of translocator protein (18 kDa) binding in different brain areas, which is not affected by chronic MAP-kinase p38 inhibition. Metab Brain Dis 29:955–963CrossRefPubMedGoogle Scholar
  3. Banati RB (2002) Visualising microglial activation in vivo. Glia 40:206–217CrossRefPubMedGoogle Scholar
  4. Bémeur C, Butterworth RF (2013) Liver-brain proinflammatory signalling in acute liver failure: role in the pathogenesis of hepatic encephalopathy and brain edema. Metab Brain Dis 28:145–150CrossRefPubMedGoogle Scholar
  5. Bernal W, Wendon J (2013) Acute liver failure. N Engl J Med 369:2525–2534CrossRefPubMedGoogle Scholar
  6. Butterworth RF (2011) Hepatic encephalopathy: a central neuroinflammatory disorder? Hepatology 53:1372–1376CrossRefPubMedGoogle Scholar
  7. Butterworth RF (2013) The liver–brain axis in liver failure: neuroinflammation and encephalopathy. Nat Rev Gastroenterol Hepatol 10:522–528CrossRefPubMedGoogle Scholar
  8. Butterworth RF, Norenberg MD, Felipo V, Ferenci P, Albrecht J, Blei AT, Members of the ISHEN Commission on Experimental Models of HE (2009) Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int 29:783–788CrossRefPubMedGoogle Scholar
  9. Cagnin A, Taylor-Robinson SD, Forton DM, Banati RB (2006) In vivo imaging of cerebral "peripheral benzodiazepine binding sites" in patients with hepatic encephalopathy. Gut 55:547–553CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chauveau F, Van Camp N, Dollé F, Kuhnast B, Hinnen F, Damont A, Boutin H, James M, Kassiou M, Tavitian B (2009) Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med 50:468–476CrossRefPubMedGoogle Scholar
  11. Chen MK, Guilarte TR (2008) Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ciećko-Michalska I, Szczepanek M, Słowik A, Mach T (2012) Pathogenesis of hepatic encephalopathy. Gastroenterol Res Pract 2012:642108CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dhanda S, Sandhir R (2015) Role of dopaminergic and serotonergic neurotransmitters in behavioral alterations observed in rodent model of hepatic encephalopathy. Behav Brain Res 286:222–235CrossRefPubMedGoogle Scholar
  14. Dhanda S, Gupta S, Halder A, Sunkaria A, Sandhir R (2018) Systemic inflammation without gliosis mediates cognitive deficits through impaired BDNF expression in bile duct ligation model of hepatic encephalopathy. Brain Behav Immun 70:214–232CrossRefPubMedGoogle Scholar
  15. Doorduin J, Klein HC, Dierckx RA, James M, Kassiou M, de Vries EF (2009) [11C]-DPA-713 and [18F]-DPA-714 as new PET tracers for TSPO: a comparison with [11C]-(R)-PK11195 in a rat model of herpes encephalitis. Mol Imaging Biol 11:386–398CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gamal M, Abdel Wahab Z, Eshra M, Rashed L, Sharawy N (2014) Comparative neuroprotective effects of dexamethasone and minocycline during hepatic encephalopathy. Neurol Res Int 2014:254683CrossRefPubMedPubMedCentralGoogle Scholar
  17. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer's disease. Lancet Neurol 14:388–405CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jacobs AH, Tavitian B, the INMiND consortium (2012) Noninvasive molecular imaging of neuroinfl ammation. J Cereb Blood Flow Metab 32:1393–1415CrossRefPubMedPubMedCentralGoogle Scholar
  19. James ML, Fulton RR, Vercoullie J, Henderson DJ, Garreau L, Chalon S, Dolle F, Costa B, Guilloteau D, Kassiou M (2008) DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med 49:814–822CrossRefPubMedGoogle Scholar
  20. Jiang W, Desjardins P, Butterworth RF (2009) Minocycline attenuates oxidative/nitrosative stress and cerebral complications of acute liver failure in rats. Neurochem Int 55:601–605CrossRefPubMedGoogle Scholar
  21. Jover R, Rodrigo R, Felipo V, Insausti R, Sáez-Valero J, García-Ayllón MS, Suárez I, Candela A, Compañ A, Esteban A, Cauli O, Ausó E, Rodríguez E, Gutiérrez A, Girona E, Erceg S, Berbel P, Pérez-Mateo M (2006) Brain edema and inflammatory activation in bile duct ligated rats with diet-induced hyperammonemia: a model of hepatic encephalopathy in cirrhosis. Hepatology 43:1257–1266CrossRefPubMedGoogle Scholar
  22. Kong X, Luo S, Wu JR, Wu S, De Cecco CN, Schoepf UJ, Spandorfer AJ, Wang CY, Tian Y, Chen HJ, Lu GM, Yang GF, Zhang LJ (2016) 18F-DPA-714 PET imaging for detecting neuroinflammation in rats with chronic hepatic encephalopathy. Theranostics 6:1220–1231CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lavisse S, Inoue K, Jan C, Peyronneau MA, Petit F, Goutal S, Dauguet J, Guillermier M, Dollé F, Rbah-Vidal L, Van Camp N, Aron-Badin R, Remy P, Hantraye P (2015) [18F]DPA-714 PET imaging of translocator protein TSPO (18 kDa) in the normal and excitotoxically-lesioned nonhuman primate brain. Eur J Nucl Med Mol Imaging 42:478–494CrossRefPubMedGoogle Scholar
  24. Milewski K, Hilgier W, Albrecht J, Zielińska M (2015) The dimethylarginine (ADMA)/nitric oxide pathway in the brain and periphery of rats with thioacetamide-induced acute liver failure: modulation by histidine. Neurochem Int 88:26–31CrossRefPubMedGoogle Scholar
  25. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201CrossRefPubMedGoogle Scholar
  26. Pugliese F, Gaemperli O, Kinderlerer AR, Lamare F, Shalhoub J, Davies AH, Rimoldi OE, Mason JC, Camici PG (2010) Imaging of vascular inflammation with [11C]-PK11195 and positron emission tomography/computed tomography angiography. J Am Coll Cardiol 56:653–661CrossRefPubMedGoogle Scholar
  27. Rahman TM, Hodgson HJ (2003) The effects of early and late administration of inhibitors of inducible nitric oxide synthase in a thioacetamide-induced model of acute hepatic failure in the rat. J Hepatol 38:583–590CrossRefPubMedGoogle Scholar
  28. Rocksén D, Lilliehöök B, Larsson R, Johansson T, Bucht A (2000) Differential anti-inflammatory and anti-oxidative effects of dexamethasone and N-acetylcysteine in endotoxin-induced lung inflammation. Clin Exp Immunol 122:249–256CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rupprecht R, Rammes G, Eser D, Baghai TC, Schüle C, Nothdurfter C, Troxler T, Gentsch C, Kalkman HO, Chaperon F, Uzunov V, McAllister KH, Bertaina-Anglade V, La Rochelle CD, Tuerck D, Floesser A, Kiese B, Schumacher M, Landgraf R, Holsboer F, Kucher K (2009) Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science 325:490–493CrossRefPubMedGoogle Scholar
  30. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9:971–988CrossRefPubMedGoogle Scholar
  31. Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11:308–322CrossRefPubMedGoogle Scholar
  32. Su YY, Yang GF, Lu GM, Wu S, Zhang LJ (2015) PET and MR imaging of neuroinflammation in hepatic encephalopathy. Metab Brain Dis 30:31–45CrossRefPubMedGoogle Scholar
  33. Thiel A, Heiss WD (2011) Imaging of microglia activation in stroke. Stroke 42:507–512CrossRefPubMedGoogle Scholar
  34. Vaquero J (2012) Therapeutic hypothermia in the management of acute liver failure. Neurochem Int 60:723–735CrossRefPubMedGoogle Scholar
  35. Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, Boerman OC (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50:139–147CrossRefPubMedGoogle Scholar
  36. Wang F, Wang Z, Hida N, Kiesewetter DO, Ma Y, Yang K, Rong P, Liang J, Tian J, Niu G, Chen X (2014) A cyclic HSV1-TK reporter for real-time PET imaging of apoptosis. Proc Natl Acad Sci U S A 111:5165–5170CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wu C, Yue X, Lang L, Kiesewetter DO, Li F, Zhu Z, Niu G, Chen X (2014) Longitudinal PET imaging of muscular inflammation using 18F-DPA-714 and 18F-Alfatide II and differentiation with tumors. Theranostics 4:546–555CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zemtsova I, Gorg B, Keitel V, Bidmon HJ, Schror K, Haussinger D (2011) Microglia activation in hepatic encephalopathy in rats and humans. Hepatology 54:204–215CrossRefPubMedGoogle Scholar
  39. Zhang L, Qi R, Wu S, Zhong J, Zhong Y, Zhang Z, Zhang Z, Lu G (2012) Brain default-mode network abnormalities in hepatic encephalopathy: a resting-state functional MRI study. Hum Brain Mapp 33:1384–1392CrossRefPubMedGoogle Scholar
  40. Ziylan YZ, Uzüm G, Bernard G, Diler AS, Bourre JM (1993) Changes in the permeability of the blood-brain barrier in acute hyperammonemia. Effect of dexamethasone. Mol Chem Neuropathol 20:203–218CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Song Luo
    • 1
  • Xiang Kong
    • 1
  • Jin Rong Wu
    • 2
  • Chun Yan Wang
    • 1
  • Ying Tian
    • 1
  • Gang Zheng
    • 1
  • Yun Yan Su
    • 1
  • Guang Ming Lu
    • 1
  • Long Jiang Zhang
    • 1
    Email author
  • Gui Fen Yang
    • 3
    Email author
  1. 1.Department of Medical Imaging, Jinling HospitalMedical School of Nanjing UniversityNanjingChina
  2. 2.Department of Pathology, Jinling HospitalMedical School of Nanjing UniversityNanjingChina
  3. 3.Department of Nuclear MedicineJinling Hospital, Medical School of Nanjing UniversityNanjingChina

Personalised recommendations