Advertisement

Metabolic Brain Disease

, Volume 33, Issue 5, pp 1431–1441 | Cite as

Using invertebrate model organisms for neuroscience research and training: an opportunity for Africa

  • Wasiu Gbolahan Balogun
  • Ansa Emmanuel Cobham
  • Abdulbasit Amin
  • Azman Seeni
Original Article

Abstract

Africa is faced with an increasing underrepresentation of her research progress in many fields of science including neuroscience. This underrepresentation stems from the very low investments directed towards research by African governments as these are thought to be high-priced. Scientists and researchers within the continent are left to compete highly for the very limited research grants or choose to fund research from their personal purse. Therefore, presenting a need for all possible strategies to make science and research approaches more affordable in Africa. This paper presents one of such strategy, which advocates the use of invertebrate animal models for neuroscience research in place of the commonly used vertebrate models. Invertebrates are cheaper, more available and easy to handle options and their use is on the rise, even in the developed societies of the world. Here, we investigate the current state of invertebrate neuroscience research in Africa looking at countries and institutions conducting neuroscience research with invertebrates and their publication output. We discuss the factors which impede invertebrate neuroscience research in Africa like lack of research infrastructure and adequate expert scientists and conclude by suggesting solutions to these challenges.

Keywords

Invertebrates Neuroscience Africa Modelling Research Training 

Notes

Acknowledgements

BWG is grateful to USM and TWAS for the award of doctorate fellowship, CAE is grateful to Monash University, Australia for the award of Dean Scholarship, AA is grateful to the FCG, Portugal for the doctorate fellowship and the University of Ilorin, Nigeria for staff development award.

Compliance with ethical standards

Conflict of interest

The authors declared no conflict of interest.

References

  1. Abd-Allah F, Kissani N, William A, Oraby MI, Moustafa RR, Shaker E, El-Tamawy MS, Shakir R (2016) Neuroscience research in Africa: current status. eNeurologicalSci 3:7–10CrossRefPubMedGoogle Scholar
  2. Abolaji AO, Kamdem JP, Lugokenski TH, Nascimento TK, Waczuk EP, Farombi EO, Loreto ÉLS, Rocha JBT (2014) Involvement of oxidative stress in 4-vinylcyclohexene-induced toxicity in Drosophila melanogaster. Free Radic Biol Med 71:99–108CrossRefPubMedGoogle Scholar
  3. Abolaji AO, Kamdem JP, Lugokenski TH, Farombi EO, Souza DO, Loreto ÉLS, Rocha JBT (2015) Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster. Redox Biol 5:328–339CrossRefPubMedPubMedCentralGoogle Scholar
  4. Adedara IA, Rosemberg DB, de Souza D, Farombi EO, Aschner M, Souza DO, Rocha JBT (2016a) Neurobehavioral and biochemical changes in Nauphoeta cinerea following dietary exposure to chlorpyrifos. Pestic Biochem Physiol 130:22–30CrossRefPubMedGoogle Scholar
  5. Adedara IA, Rosemberg DB, Souza DO, Farombi EO, Aschner M, Rocha JBT (2016b) Neuroprotection of luteolin against methylmercury-induced toxicity in lobster cockroach Nauphoeta cinerea. Environ Toxicol Pharmacol 42:243–251CrossRefPubMedGoogle Scholar
  6. Ajayi A, Withyachumnarnkul B (2013) Presence and distribution of FMRFamide-like immunoreactivity in the sea cucumber Holothuria scabra (jaeger, 1833). Zoomorphology 132(3):285–300CrossRefGoogle Scholar
  7. Ajayi A, Withyachumnarnkul B (2015) Expression of GFSKLYFamide-like neuropeptide in the digestive system of the sea cucumber Holothuria scabra (Echinodermata). Afr J Biotechnol 14(25):2124–2129CrossRefGoogle Scholar
  8. Andersson O, Hansen SH, Hellman K, Olsen LR, Andersson G, Badolo L, Svenstrup N, Nielsen PA (2013) The grasshopper: a novel model for assessing vertebrate brain uptake. J Pharmacol Exp Ther 346(2):211–218CrossRefPubMedGoogle Scholar
  9. Awofala AA (2012) Application of microarray technology in Drosophila ethanol behavioral research. Front Biol 7(1):65–72CrossRefGoogle Scholar
  10. Awofala AA, Jones S, Davies JA (2011) The heat shock protein 26 gene is required for ethanol tolerance in Drosophila. J Exp Neurosci 5:31–44CrossRefGoogle Scholar
  11. Awofala AA, Davies JA, Jones S (2012) Functional roles for redox genes in ethanol sensitivity in Drosophila. Funct Integr Genomics 12(2):305–315CrossRefGoogle Scholar
  12. Azandémè-Hounmalon GY, Torto B, Fiaboe KKM, Subramanian S, Kreiter S, Martin T (2016) Visual, vibratory, and olfactory cues affect interactions between the red spider mite Tetranychus evansi and its predator Phytoseiulus longipes. J Pest Sci 89:137–152CrossRefGoogle Scholar
  13. Balaban P (1993) Behavioral neurobiology of learning in terrestrial snails. Prog Neurobiol 41:1–19CrossRefPubMedGoogle Scholar
  14. Balogun WG, Cobham AE, Amin A (2018) Neuroscience in Nigeria: the past, the present and the future. Metab Brain Dis 33(2):359–368CrossRefPubMedGoogle Scholar
  15. Binyameen M, Anderson P, Ignell R, Seada MA, Hansson BS, Schlyter F (2012) Spatial organization of antennal olfactory sensory neurons in the female Spodoptera littoralis moth: differences in sensitivity and temporal characteristics. Chem Senses 37(7):613–629CrossRefPubMedGoogle Scholar
  16. Bruce YA, Schulthess F, Mueke J, Calatayud P-A (2009) Olfactory attraction of egg parasitoids to virgin females of noctuid stemborers. BioControl 54:763–772CrossRefGoogle Scholar
  17. Canavesi C, Long S, Fantone D, Jakob E, Jackson RR, Harland D, Rolland JP (2011) Design of a retinal tracking system for jumping spiders. Proceedings of SPIE Optics+Photonics 8129:812–909Google Scholar
  18. Cerveira AM, Jackson RR (2013a) Love is in the air: olfaction-based mate-odour identification by jumping spiders from the genus Cyrba. J Ethol 31:29–34CrossRefGoogle Scholar
  19. Cerveira AM, Jackson RR (2013b) Love is in the air and on the ground: olfactory and tactile cues elicit visual courtship behavior by Cyrba males (Araneae: Salticidae). J Arachnol 41:374–380CrossRefGoogle Scholar
  20. Cross FR, Jackson RR (2009) Cross-modality priming of visual and olfactory selective attention by a spider that feeds indirectly on vertebrate blood. J Exp Biol 212:1869–1875CrossRefPubMedGoogle Scholar
  21. Dacke M, Byrne MJ, Smolka J, Warrant EJ, Baird E (2013) Dung beetles ignore landmarks for straight-line orientation. J Comp Physiol A 199(1):17–23CrossRefGoogle Scholar
  22. el Jundi B, Smolka J, Baird E, Byrne MJ, Dacke M (2014) Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation. J Exp Biol 217:2422–2429CrossRefPubMedGoogle Scholar
  23. el Jundi B, Warrant EJ, Byrne MJ, Khaldy L, Baird E, Smolka J, Dacke M (2015) Neural coding underlying the cue preference for celestial orientation. Proc Natl Acad Sci U S A 112(36):11395–11400CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fiaboe KKM, Mankin RW, Roda AL, Kairo MTK, Johanns C (2011) Pheromone-food-bait trap and acoustic surveys of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in curacao. Fla Entomol 94(4):766–773CrossRefGoogle Scholar
  25. Gäde G, Marco HG (2006) Structure, function and mode of action of select arthropod neuropeptides. Stud Nat Prod Chem 33(Part M):69–139CrossRefGoogle Scholar
  26. Gäde G, Šimek P, Marco HG (2007) A novel adipokinetic peptide in a water boatman (Heteroptera, Corixidae) and its bioanalogue in a saucer bug (Heteroptera, Naucoridae). Peptides 28(3):594–601CrossRefPubMedGoogle Scholar
  27. Gäde G, Šimek P, Marco HG (2016) Novel members of the adipokinetic hormone family in beetles of the superfamily Scarabaeoidea. Amino Acids 48(12):2785–2798CrossRefPubMedGoogle Scholar
  28. Ghedira J, Jebali J, Bouraoui Z, Banni M, Chouba L, Boussetta H (2009) Acute effects of chlorpyryphos-ethyl and secondary treated effluents on acetylcholinesterase and butyrylcholinesterase activities in Carcinus maenas. J Environ Sci 21(10):1467–1472CrossRefGoogle Scholar
  29. Habib MR, Mohamed HA, Osman GY, Sharaf El-Din AT, Mossalem HS, Delgado N, Torres G, Rolón-Martínez S, Miller MW, Croll RP (2015) Histamine Immunoreactive elements in the central and peripheral nervous Systems of the Snail, Biomphalaria spp., intermediate host for Schistosoma mansoni. PLoS One 10(6):e0129800CrossRefPubMedPubMedCentralGoogle Scholar
  30. Harland DP, Jackson RR (2000) "Eight-legged cats" and how they see - a review of recent research on jumping spiders (Araneae: Salticidae). Cimbebasia 16:231–240Google Scholar
  31. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544CrossRefPubMedPubMedCentralGoogle Scholar
  32. Imeh-Nathaniel A, Okon M, Huber R, Nathaniel TI (2014) Exploratory behavior and withdrawal signs in crayfish: chronic central morphine injections and termination effects. Behav Brain Res 264:181–187CrossRefPubMedGoogle Scholar
  33. Jackson RR, Cross FR (2011) Spider cognition. Adv In Insect Phys 41:115–174Google Scholar
  34. Jackson RR, Cross FR (2012) Attending to detail by communal spider-eating spiders. Anim Cogn 15(4):461–471CrossRefPubMedGoogle Scholar
  35. Jackson RR, Cross FR (2013) A cognitive perspective on aggressive mimicry. J Zool 290(3):161–171CrossRefGoogle Scholar
  36. Jebali J, Ben-Khedher S, Kamel N, Ghedira J, Bouraoui Z, Boussetta H (2011) Characterization and evaluation of cholinesterase activity in the cockle Cerastoderma glaucum. Aquat Biol 13:243–250CrossRefGoogle Scholar
  37. Jebali J, Ben Khedher S, Sabbagh M, Kamel N, Banni M, Boussetta H (2013) Cholinesterase activity as biomarker of neurotoxicity: utility in the assessment of aquatic environment contamination. JICZM 13(4):525–537CrossRefGoogle Scholar
  38. Jennings BH (2011) Drosophila – a versatile model in biology & medicine. Mater Today 14(5):190–195CrossRefGoogle Scholar
  39. Juma G, Chimtawi M, Ahuya P, Njagi PGN, Le Rü B, Magoma G, Silvain J-F, Calatayud P-A (2008) Distribution of chemo- and mechanoreceptors on the antennae and maxillae of Busseola fusca larvae. Entomol Exp Appl 128(1):93–98CrossRefGoogle Scholar
  40. Kandel ER (2004) The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 24:477–522CrossRefGoogle Scholar
  41. Karikari TK, Quansah E, Mohamed WMY (2015) Developing expertise in bioinformatics for biomedical research in Africa. Applied and Translational Genomics 6:31–34CrossRefPubMedGoogle Scholar
  42. Karikari TK, Cobham AE, Ndams IS (2016) Building sustainable neuroscience capacity in Africa: the role of non-profit organizations. Metab Brain Dis 31(1):3–9CrossRefPubMedGoogle Scholar
  43. Kasture A, El-Kasaby A, Szöllősi D, Asjad HMM, Grimm A, Stockner T, Hummel T, Freissmuth M, Sucic S (2016) Functional rescue of a misfolded Drosophila melanogaster dopamine transporter mutant associated with a sleepless phenotype by pharmacological chaperones. J Biol Chem 291:20876–20890CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kaufmann C, Merzendorfer H, Gäde G (2009) The adipokinetic hormone system in Culicinae (Diptera: Culicidae): molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. aegypti. Insect Biochem Mol Biol 39(11):770–781CrossRefPubMedGoogle Scholar
  45. Kaun KR, Devineni AV, Heberlein U (2012) Drosophila melanogaster as a model to study drug addiction. Hum Genet 131(6):959–975CrossRefPubMedPubMedCentralGoogle Scholar
  46. Malik A, Gäde G, Lange AB (2012) Sequencing and biological effects of an adipokinetic/hypertrehalosemic peptide in the stick insect, Baculum extradentatum. Peptides 34(1):51–56CrossRefPubMedGoogle Scholar
  47. Manger PR, Cort J, Ebrahim N, Goodman A, Henning J, Karolia M, Rodrigues SL, Strkalj G (2008) Is 21st century neuroscience too focussed on the rat/mouse model of brain function and dysfunction? Front Neuroanat 2:5CrossRefPubMedPubMedCentralGoogle Scholar
  48. Marco HG, Šimek P, Gäde G (2011) The first decapeptide adipokinetic hormone (AKH) in Heteroptera: a novel AKH from a south African saucer bug, Laccocoris spurcus (Naucoridae, Laccocorinae). Peptides 32(3):454–460CrossRefPubMedGoogle Scholar
  49. Marco HG, Gäde G (2015) Structure–activity relationship of adipokinetic hormone analogs in the striped hawk moth, Hippotion eson. Peptides 68:205–210CrossRefPubMedGoogle Scholar
  50. Martín-Bermudo MD, Gebel L, Palacios IM (2017) DrosAfrica: building an African biomedical research community using Drosophila. Semin Cell Dev Biol 70:58–64CrossRefPubMedGoogle Scholar
  51. Obiero GF, Mireji PO, Nyanjom SR, Christoffels A, Robertson HM, Masiga DK (2014) Odorant and gustatory receptors in the tsetse fly Glossina morsitans morsitans. PLoS Negl Trop Dis 8(4):e2663CrossRefPubMedPubMedCentralGoogle Scholar
  52. Okeke IN, Babalola CP, Byarugaba DK, Djimde A, Osoniyi OR (2017) Broadening participation in the sciences within and from Africa: purpose, challenges, and prospects. CBE Life Sci Educ 16(2):es2CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pflüger H-J, Wolf H (2013) Developmental and activity-dependent plasticity of filiform hair receptors in the locust. Front Physiol 4:70CrossRefPubMedPubMedCentralGoogle Scholar
  54. Quansah E, Karikari TK (2016) Neuroscience-related research in Ghana: a systematic evaluation of direction and capacity. Metab Brain Dis 31(1):11–24CrossRefPubMedGoogle Scholar
  55. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11(6):1114–1125CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rouibi A, Bouchema W-F, Loucif-Ayad W, Achou M, Soltani N (2016) Risks assessment of two acaricides (fluvalinate and oxalic acid) in Apis mellifera intermissa (Hymenoptera, Apidae): acetylcholinesterase and glutathione S-transferase activities. J Entomol Zool Stud 4(2):503–508Google Scholar
  57. Saló E (2006) The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes). Bioessays 28:546–559CrossRefPubMedGoogle Scholar
  58. Seada MA, El kholy SE, Meshrif WS (2016) Does the cellphone radio-frequency electromagnetic radiation during ringing or talking modes induce locomotor disturbance in Drosophila melanogaster? Afr Zool 51(1):53–60CrossRefGoogle Scholar
  59. Selverston AI, Russell DF, Miller JP (1976) The stomatogastric nervous system: structure and function of a small neural network. Prog Neurobiol 7(3):215–290CrossRefPubMedGoogle Scholar
  60. Vallejo D, Habib MR, Delgado N, Vaasjo LO, Croll RP, Miller MW (2014) Localization of tyrosine hydroxylase-like immunoreactivity in the nervous systems of Biomphalaria glabrata and Biomphalaria alexandrina, intermediate hosts for schistosomiasis. J Comp Neurol 522(11):2532–2552CrossRefPubMedPubMedCentralGoogle Scholar
  61. Velazquez-Ulloa NA (2017) A Drosophila model for developmental nicotine exposure. PLoS One 12(5):e0177710CrossRefPubMedPubMedCentralGoogle Scholar
  62. WHO-AIMS (2006) Mental Health System in Nigeria. Available from http://www.who.int/mental_health/evidence/WHO-AIMS/en/index.html
  63. Wolbarsht ML, Yeandle SS (1967) Visual processes in the Limulus eye. Annu Rev Physiol 29:513–542CrossRefPubMedGoogle Scholar
  64. Wolf H (2014) Inhibitory motoneurons in arthropod motor control: organisation, function, evolution. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200(8):693–710CrossRefGoogle Scholar
  65. Yilmaz A, Chabaud MA (2011) The second joint Kemali-IBRO Mediterranean school of neuroscience is the first for invertebrate neuroscience. Invertebr Neurosci 11:103–107CrossRefGoogle Scholar
  66. Yusuf AA, Pirk CWW, Crewe RM, Njagi PGN, Gordon I, Torto B (2010) Nestmate recognition and the role of cuticular hydrocarbons in the African termite raiding ant Pachycondyla analis. J Chem Ecol 36:441–448CrossRefPubMedGoogle Scholar
  67. Yusuf S, Baden T, Prieto-Godino LL (2014) Bridging the gap: establishing the necessary infrastructure and knowledge for teaching and research in neuroscience in Africa. Metab Brain Dis 29(2):217–220CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Medical and Dental InstituteUniversiti Sains MalaysiaPenangMalaysia
  2. 2.Department of Anatomy, Faculty of Basic Medical SciencesUniversity of CalabarCalabarNigeria
  3. 3.School of Biological SciencesMonash UniversityMelbourneAustralia
  4. 4.Department of Physiology, Faculty of Basic Medical SciencesUniversity of IlorinIlorinNigeria
  5. 5.Instituto Gulbenkian de CiênciaLisbonPortugal
  6. 6.Malaysian Institute of Pharmaceuticals and NutraceuticalsNational Institutes of Biotechnology MalaysiaGelugorMalaysia

Personalised recommendations