Metabolic Brain Disease

, Volume 33, Issue 4, pp 1327–1334 | Cite as

Telmisartan attenuates hydrogen peroxide-induced apoptosis in differentiated PC12 cells

  • Guan Tao Du
  • Xuan Ke
  • Guo Liang Meng
  • Guang Jun Liu
  • Hui Ying Wu
  • Jin Hong Gong
  • Xiao Dan Qian
  • Jin Luo ChengEmail author
  • Hao HongEmail author
Original Article


The present study investigated the protective actions of telmisartan, an angiotensin II type 1 receptor blocker (ARBs), against the cell apoptosis induced by exposure to hydrogen peroxide (H2O2) in differentiated PC12 cells. Preincubation of PC12 cells with telmisartan prevented H2O2-induced cytotoxicity as indicated by increased MTT (3,(4,5-dimethylthiazole-2-yl)2,5-diphenyl-tetrazolium bromide) reduction, decreased lactate dehydrogenase (LDH) release, and improved morphological changes. Hoechst 33,258 staining showed that telmisartan markedly reduced shrunken nuclei of the cells, and Western blot analysis indicated that telmisartan significantly attenuated caspase-3 activity, as indicated by decreased ratio of cleaved Caspase-3 to its precursor and increased ratio of Bcl-2/Bax. The present findings showed that telmisartan protected against cellular oxidative damages by inhibiting apoptotic response.


Telmisartan Oxidative stress Cytotoxicity Apoptosis 



This work was supported by grants from the National Natural Science Foundation of China (81573413 and 81773714 to Hao Hong) and the Fundamental Research Funds for the Central Universities (2632017PT01).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest.


  1. Abdul-Muneer PM, Chandra N, Haorah J (2015) Interactions of oxidative stress andneurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol 51:966–979CrossRefPubMedGoogle Scholar
  2. Adler EM (2006) Teaching resources. Cell culture as a model system for teaching: using PC12 cells. Sci STKE 2006Google Scholar
  3. Amin FU, Shah SA, Kim MO (2017) Vanillic acid attenuates Aβ1-42-induced oxidative stressand cognitive impairment in mice. Sci Rep 7:40753CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ansari FA, Ali SN, Mahmood R (2015) Sodium nitrite-induced oxidative stress causesmembrane damage, protein oxidation, lipid peroxidation and alters major metabolic pathwaysin human erythrocytes. Toxicol in Vitro 29(7):1878–1886CrossRefPubMedGoogle Scholar
  5. Balaban H, Nazıroğlu M, Demirci K, Övey İS (2017) The protective role of selenium on scopolamine-induced memory impairment, oxidative stress, and apoptosis in aged rats: the involvement of TRPM2 and TRPV1 channels. Mol Neurobiol 54(4):2852–2868CrossRefPubMedGoogle Scholar
  6. Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110CrossRefPubMedGoogle Scholar
  7. Cianchetti S, Del Fiorentino A, Colognato R, Di Stefano R, Franzoni F, Pedrinelli R (2008) Anti-inflammatory and anti-oxidant properties of telmisartan in cultured human umbilicalvein endothelial cells. Atherosclerosis 198:22–28CrossRefPubMedGoogle Scholar
  8. Cordeiro JV, Jacinto A (2013) The role of transcription-independent damage signals in theinitiation of epithelial wound healing. Nat Rev Mol Cell Biol 14:249–262CrossRefPubMedGoogle Scholar
  9. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson's disease. J Parkinsons Dis 3:461–491PubMedPubMedCentralGoogle Scholar
  10. Du GT, Hu M, Mei ZL, Wang C, Liu GJ, Hu M, Long Y, Miao MX, Chang Li J, Hong H (2014) Telmisartan treatment ameliorates memory deficits in streptozotocin-induced diabeticmice via attenuating cerebral amyloidosis. J Pharmacol Sci 124:418–426CrossRefPubMedGoogle Scholar
  11. Duan YT, Gao YH, Zhang J, Chen YN, Jiang YN, Ji J, Zhang JN, Chen XH, Yang QM, Su LP, Zhang J, Liu BY, Zhu ZG, Wang LS, Yu YY (2016) Mitochondrial aldehyde dehydrogenase 2 protects gastric mucosa cells against DNA damage caused by oxidative stress. Free Radic Biol Med 93:165–176CrossRefPubMedGoogle Scholar
  12. Eslami H, Sharifi AM, Rahimi H, Rahati M (2014) Protective effect of telmisartan against oxidative damage induced by high glucose in neuronal PC12 cell. Neurosci Lett 558:31–36CrossRefPubMedGoogle Scholar
  13. Fatima G, Sharma VP, Das SK, Mahdi AA (2015) Oxidative stress and antioxidative parameters in patients with spinal cord injury: implications in the pathogenesis of disease. Spinal Cord 53:3–6CrossRefPubMedGoogle Scholar
  14. Fischer SJ, Podratz JL, Windebank AJ (2001) Nerve growth factor rescue of cisplatin neurotoxicity is mediated through the high affinity receptor: studies in PC12 cells and p75 null mouse dorsal root ganglia. Neurosci Lett 308:1–4CrossRefPubMedGoogle Scholar
  15. García-Blanco A, Baquero M, Vento M, Gil E, Bataller L, Cháfer-Pericás C (2017) Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease. J Neurol Sci 373:295–302CrossRefPubMedGoogle Scholar
  16. Garrido-Gil P, Joglar B, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL (2012) Involvement of PPAR-γ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson’s disease. J Neuroinflamm 9:38CrossRefGoogle Scholar
  17. Greene A, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428CrossRefPubMedPubMedCentralGoogle Scholar
  18. Haraguchi T, Iwasaki K, Takasaki K, Uchida K, Naito T, Nogami A, Kubota K, Shindo T, Uchida N, Katsurabayashi S, Mishima K, Nishimura R, Fujiwara M (2010) Telmisartan, a partial agonist of peroxisome proliferator-activated receptor gamma, improves impairment of spatial memory and hippocampal apoptosis in rats treated with repeated cerebral ischemia. Brain Res 1353:125–312CrossRefPubMedGoogle Scholar
  19. Hayashi M, Miyata R, Tanuma N (2012) Oxidative stress in developmental brain disorders. Adv Exp Med Biol 724:278–290CrossRefPubMedGoogle Scholar
  20. Hong H, Liu GQ (2004) Protection against hydrogen peroxide-induced cytotoxicity in PC12 cells by scutellarin. Life Sci 74:2959–2973CrossRefPubMedGoogle Scholar
  21. Jang JH, Surh YJ (2001) Protective effects of resveratrol on hydrogen peroxide-induced apoptosis in rat pheochromocytoma (PC12) cells. Mutat Res 496(1–2):181–190CrossRefPubMedGoogle Scholar
  22. Ji Y, Liu J, Wang Z, Liu N, Gou W (2009) PPAR gamma agonist, rosiglitazone, regulates angiotensin II-induced vascular inflammation through the TLR4-dependent signaling pathway. Lab Investig 89:887–902CrossRefPubMedGoogle Scholar
  23. Jiang T, Sun Q, Chen S (2016) Oxidative stress: a major pathogenesis and potentialtherapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease. Prog Neurobiol 147:1–19CrossRefPubMedGoogle Scholar
  24. Jung KH, Chu K, Lee ST, Kim SJ, Song EC, Kim EH, Park DK, Sinn DI, Kim JM, Kim M, Roh JK (2007) Blockade of AT1 receptor reduces apoptosis, inflammation, and oxidative stress in normotensive rats with intracerebral hemorrhage. J Pharmacol Exp Ther 322:1051–1058CrossRefPubMedGoogle Scholar
  25. Kasahara Y, Taguchi A, Uno H, Nakano A, Nakagomi T, Hirose H, Stern DM, Matsuyama T (2010) Telmisartan suppresses cerebral injury in a murine model of transient focal ischemia. Brain Res 1340:70–80CrossRefPubMedGoogle Scholar
  26. Kijima K, Matsubara H, Murasawa S, Maruyama K, Ohkubo N, Mori Y, Inada M (1996) Regulation of angiotensin II type 2 receptor gene by the protein kinase C-calcium pathway. Hypertension 27:529–534CrossRefPubMedGoogle Scholar
  27. Kim SW, Choi OK, Chang MS, Shin CS, Park KS, Kim SY (2008) Thiazolidinediones inhibit the growth of PC12 cells both in vitro and in vivo. Biochem Biophys Res Commun 371:197–202CrossRefPubMedGoogle Scholar
  28. Kishi T, Hirooka Y, Sunagawa K (2012) Telmisartan protects against cognitive decline via up-regulation of brain-derived neurotrophic factor/tropomyosin-related kinase B in hippocampus of hypertensive rats. J Cardiol 60:489–494CrossRefPubMedGoogle Scholar
  29. Leszek J, Barreto GE, Gąsiorowski K, Koutsouraki E, Ávila-Rodrigues M, Aliev G (2016) Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol Disord Drug Targets 15:329–336CrossRefPubMedGoogle Scholar
  30. Lin X, Wu S, Wang Q, Shi Y, Liu G, Zhi J, Wang F (2016) Saikosaponin-D reduces H2O2-induced PC12 cell apoptosis by removing ROS and Blocking MAPK-dependent oxidative damage. Cell Mol Neurobiol 36(8):1365–1375CrossRefPubMedGoogle Scholar
  31. Luo H, Chiang HH, Louw M, Susanto A, Chen D (2017) Nutrient sensing and the oxidative stress response. Trends Endocrinol Metab 28:449–460CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mogi M, Li JM, Tsukuda K, Iwanami J, Min LJ, Sakata A, Fujita T, Iwai M, Horiuchi M (2008) Telmisartan prevented cognitive decline partly due to PPAR gamma activation. Biochem Biophys Res Commun 375:446–449CrossRefPubMedGoogle Scholar
  33. Murasawa S, Matsubara H, Urakami M, Inada M (1993) Regulatory elements that mediate expression of the gene for the angiotensin II type 1a receptor for the rat. J Biol Chem 268:26996–27003PubMedGoogle Scholar
  34. Pang T, Sun LX, Wang T, Jiang ZZ, Liao H, Zhang LY (2014) Telmisartan protects central neurons against nutrient deprivation-induced apoptosis in vitro through activation of PPARγ and the Akt/GSK-3β pathway. Acta Pharmacol Sin 35:727–737CrossRefPubMedPubMedCentralGoogle Scholar
  35. Patel M (2016) Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci 37:768–778CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rani V, Deep G, Singh RK, Palle K, Yadav UC (2016) Oxidative stress and metabolicdisorders: pathogenesis and therapeutic strategies. Life Sci 148:183–193CrossRefPubMedGoogle Scholar
  37. Rudkin BB, Lazarovici P, Levi BZ, Abe Y, Fujita K, Guroff G (1989) Cell cycle-specific action of nerve growth factor in PC12 cells: differentiation without proliferation. EMBO J 8:3319–3325PubMedPubMedCentralCrossRefGoogle Scholar
  38. Saavedra JM (2012) Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin Sci (Lond) 123:567–590CrossRefGoogle Scholar
  39. Sharma B, Singh N (2012) Experimental hypertension induced vascular dementia: pharmacological, biochemical and behavioral recuperation by angiotensin receptor blocker and acetylcholinesterase inhibitor. Pharmacol Biochem Behav 102:101–108CrossRefPubMedGoogle Scholar
  40. Shindo T, Takasaki K, Uchida K, Onimura R, Kubota K, Uchida N, Irie K, Katsurabayashi S, Mishima K, Nishimura R, Fujiwara M, Iwasaki K (2012) Ameliorative effects of telmisartan on the inflammatory response and impaired spatial memory in a rat model of Alzheimer’s disease incorporating additional cerebrovascular disease factors. Biol Pharm Bull 35:2141–2147CrossRefPubMedGoogle Scholar
  41. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295CrossRefPubMedGoogle Scholar
  42. Sies H (2014) Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 289:8735–8741CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sies H (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619CrossRefPubMedPubMedCentralGoogle Scholar
  44. Singh B, Sharma B, Jaggi AS, Singh N (2013) Attenuating effect of lisinopril and telmisartanin intracerebroventricular streptozotocin induced experimental dementia of Alzheimer’sdisease type: possible involvement of PPAR-gamma agonistic property. J Renin-Angiotensin-Aldosterone Syst 14:124–136CrossRefPubMedGoogle Scholar
  45. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent andmitochondria-independent pathways of apoptosis. Arch Toxicol 87(7):1157-1180Sharma B, Singh N (2012) experimental hypertension induced vascular dementia: pharmacological, biochemical and behavioral recuperation by angiotensin receptor blockerand acetylcholinesterase inhibitor. Pharmacol Biochem Behav 102:101–108Google Scholar
  46. Suksomboon N, Poolsup N, Prasit T (2012) Systematic review of the effect of telmisartan oninsulin sensitivity in hypertensive patients with insulin resistance or diabetes. J Clin Pharm Ther 37:319–327CrossRefPubMedGoogle Scholar
  47. Terrill JR, Radley-Crabb HG, Iwasaki T, Lemckert FA, Arthur PG, Grounds MD (2013) Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies. FEBS J 280(17):4149–4164CrossRefPubMedGoogle Scholar
  48. Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F, Iwai M, Horiuchi M (2009) Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a lowdose of telmisartan partly because of peroxisome proliferator-activated receptor-gammaactivation. Hypertension 54:782–787CrossRefPubMedGoogle Scholar
  49. van der Vliet A, Janssen-Heininger YM (2014) Hydrogen peroxide as a damage signal intissue injury and inflammation: murderer, mediator, or messenger? J Cell Biochem 115:427–435CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wang J, Pang T, Hafko R, Benicky J, Sanchez-Lemus E, Saavedra JM (2014) Telmisartanameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade and PPARγactivation. Neuropharmacology 79:249–261CrossRefPubMedGoogle Scholar
  51. Wang ZJ, Xie JH, Kan LJ, Wang JQ, Shen MY, Li WJ, Nie SP, Xie MY (2015) Sulfated polysaccharides from Cyclocarya paliurus reduce H2O2-induced oxidative stress in RAW264.7 cells. Int J Biol Macromol 80:410–417CrossRefPubMedGoogle Scholar
  52. Yamagishi S, Nakamura K, Matsui T (2007) Potential utility of telmisartan, an angiotensin IItype 1 receptor blocker with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity for the treatment of cardio metabolic disorders. Curr Mol Med 7:463–469CrossRefPubMedGoogle Scholar
  53. Yu J, Lin JJ, Yu R, He S, Wang QW, Cui W, Zhang JR (2017) Fucoxanthin prevents H2O2-induced neuronal apoptosis via concurrently activating the PI3-K/Akt cascade and inhibiting the ERK pathway. Food Nutr Res 61(1):1304678CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang W, Zhu X, Liu Y, Chen M, Yan S, Mao X, Liu Z, Wu W, Chen C, Xu X, Wang Y (2015) Nur77 was essential for neurite outgrowth and involved in Schwann cell differentiation after sciatic nerve injury. J Mol Neurosci 57:38–47CrossRefPubMedGoogle Scholar
  55. Zhao SM, Shen LH, Li HW, Wang L, Chen H, Wang YL, Guo CY (2008) Downregulation ofthe expression of angiotensin II type 1 receptor in neonatal rat cardiac fibroblast by activation of PPARγ signal pathway. Chin J Physiol 51:357–362PubMedGoogle Scholar
  56. Zhu X, Yao L, Yang X, Sun H, Guo A, Li A, Yang H (2014) Spatiotemporal expression of KHSRP modulates Schwann cells and neuronal differentiation after sciatic nerve injury. Int J Biochem Cell Biol 48:1–10CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guan Tao Du
    • 1
  • Xuan Ke
    • 2
  • Guo Liang Meng
    • 3
  • Guang Jun Liu
    • 1
  • Hui Ying Wu
    • 1
  • Jin Hong Gong
    • 1
  • Xiao Dan Qian
    • 1
  • Jin Luo Cheng
    • 1
    Email author
  • Hao Hong
    • 2
    Email author
  1. 1.Department of Pharmacy, Department of EndocrinologyChangzhou No. 2 People’s Hospital Affiliated with Nanjing Medical UniversityChangzhouChina
  2. 2.Department of PharmacologyChina Pharmaceutical UniversityNanjingChina
  3. 3.School of PharmacyNantong UniversityNantongChina

Personalised recommendations