Advertisement

Metabolic Brain Disease

, Volume 33, Issue 5, pp 1393–1399 | Cite as

Elevated plasma homocysteine levels are associated with disability progression in patients with multiple sclerosis

  • Sayonara Rangel Oliveira
  • Tamires Flauzino
  • Beatriz Sardinha Sabino
  • Ana Paula Kallaur
  • Daniela Frizon Alfieri
  • Damacio Ramon Kaimen-Maciel
  • Helena Kaminami Morimoto
  • Elaine Regina Delicato de Almeida
  • Marcell Alysson Batisti Lozovoy
  • Edna Maria Vissoci Reiche
  • Isaias Dichi
  • Andréa Name Colado Simão
Original Article

Abstract

The aims of this study were to verify whether hyperhomocysteinemia is associated with disability progression in Multiple Sclerosis (MS) patients and whether TNF pathways and cellular adhesion molecules (CAM) are involved in this process. This study included 180 MS patients, who were divided according to their levels of homocysteine (Hyperhomocysteinemia ≥11.35 μmol/L) and 204 healthy individuals (control group). MS patients showed higher levels of homocysteine (p < 0.001), tumor necrosis factor alpha (TNF-α, p < 0.001), TNF receptor 1 (TNFR1, p = 0.038), TNF receptor 2 (TNFR2, p < 0.001), and lower levels of PECAM (p = 0.001), ICAM (p < 0.001) and VCAM (p = 0.005) than controls. The multivariate binary logistic regression analysis showed that plasma levels of homocysteine, TNFR1, TNFR2 and PECAM were associated with the presence of disease. MS patients with hyperhomocysteinemia showed higher disease progression evaluated by the Multiple Sclerosis Severity Score (MSSS, p < 0.001), disability evaluated by Expanded Disability Status Score EDSS (p < 0.001), TNFR1 (p = 0.039) and ICAM (p = 0.034) than MS patients with lower levels of homocysteine. Hyperhomocysteinemia was independently associated with MSSS in MS patients, but were not associated with TNF-α, TNFR, and CAM. Homocysteine levels was higher in progressive forms than relapsing-remitting MS (p < 0.001), independently of sex and age. In conclusion, this is the first study in which homocysteinemia was associated with progression of the disease (MSSS), although this finding was not directly related to TNF-α and TNFR pathways or to CAM.

Keywords

Homocysteine Multiple sclerosis Disability Progression of disease TNF-alpha Adhesion molecule 

References

  1. Ansari R, Mahta A, Mallack E et al (2014) Hyperhomocysteinemia and neurological disorders: a review. J Clin Neurol 10:281–288CrossRefPubMedPubMedCentralGoogle Scholar
  2. Besler HT, Comoglu S (2003) Lipoprotein oxidation, plasma total antioxidant capacity and homocysteine level in patients with multiple sclerosis. Nutr Neurosci 6:189–196CrossRefPubMedGoogle Scholar
  3. Dardiotis E, Arseniou S, Sokratous M et al (2017) Vitamin B12, folate and homocysteine levels and multiple sclerosis: a meta-analysis. Mult Scler Relat Disord 17:190–197CrossRefPubMedGoogle Scholar
  4. Engelhardt B (2006) Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm 113:477–485CrossRefPubMedGoogle Scholar
  5. Fahmy EM, Elfayoumy NM, Abdelalim AM et al (2018) Relation of serum levels of homocysteine, vitamin B12 and folate to cognitive functions in multiple sclerosis patients. Int J Neurosci 21:1–7Google Scholar
  6. Faraci FM, Lentz SR (2004) Hiperhomocysteinemia, oxidative stress and cerebral vascular dysfunction. Stroke 35:345–347CrossRefPubMedGoogle Scholar
  7. Greenwood J, Heasman SJ, Alvarez JI (2011) Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37:24–39CrossRefPubMedGoogle Scholar
  8. Guzel I, Mungan S, Oztekin ZN et al (2016) Is there an association between the expanded disability status scale and inflammatory markers in multiple sclerosis? J Chin Med Assoc 79:54–57CrossRefPubMedGoogle Scholar
  9. Hartung HP, Reiners K, Archelos JJ et al (1995) Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: correlation with magnetic resonance imaging. Ann Neurol 38:186–193CrossRefPubMedGoogle Scholar
  10. Ho PI, Ortiz D, Rogers E et al (2002) Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J Neurosci Res 70:694–702CrossRefPubMedGoogle Scholar
  11. Kalinowska-Lyszczars A, Michalak S, Pawlak MA et al (2016) Serum sPECAM-1 and Svcam-1 levels are associated with conversion to multiple sclerosis in patients with optic neuritis. J Neuroimmunol 300:11–14CrossRefGoogle Scholar
  12. Kamath AF, Chauhan AK, Kisucka J et al (2006) Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood 107:591–593CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kocer B, Engur S, Ak F et al (2009) Serum vitamin B12, folate, and homocysteine levels and their association with clinical and electrophysiological parameters in multiple sclerosis. J Clin Neurosci 16:399–403CrossRefPubMedGoogle Scholar
  14. Koch MW, George S, Wall W et al (2015) Serum NSE level and disability progression in multiple sclerosis. J Neurol Sci 350:46–50CrossRefPubMedGoogle Scholar
  15. Kuenz B, Lutterotti A, Khalil M et al (2005) Plasma levels of soluble adhesion molecules S-pecam, SP-selectin and E-selectin are associated with relapsing-remmiting disease course of multiple sclerosis. J Neuroimmunol 167:143–149CrossRefPubMedGoogle Scholar
  16. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452CrossRefPubMedGoogle Scholar
  17. Moghaddasi M, Mamarabadi M, Mohebi N et al (2013) Homocysteine, vitamin B12 and folate levels in Iranian patients with multiple sclerosis: a case control study. Clin Neurol Neurosur 115:1802–1805CrossRefGoogle Scholar
  18. Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005CrossRefPubMedGoogle Scholar
  19. Panunzio MF, Pisano A, Antoniciello A et al (2003) Supplementation with fruit and vegetable concentrate decreases plasma homocysteine levels in a dietary controlled trial. Nutr Res 23:1221–1228CrossRefGoogle Scholar
  20. Polman CH, Reingold SC, Banwell B (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the “McDonald criteria”. Ann Neurol 69:293–302CrossRefGoogle Scholar
  21. Probert L (2015) TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience 302:2–22CrossRefPubMedGoogle Scholar
  22. Ramsaransing GSM, Fokkema MR, Teelken A et al (2006) Plasma homocysteine levels in multiple sclerosis. J Neurol Neurosurg Psychiatry 77:189–192CrossRefPubMedPubMedCentralGoogle Scholar
  23. Renoux C (2011) Natural history of multiple sclerosis: long-term prognostic factors. Neurol Clin 29:293–308CrossRefPubMedGoogle Scholar
  24. Rieckmann P, Altenhofen B, Riegel A et al (1998) Correlation of soluble adhesion molecules in blood and cerebrospinal fluid with magnetic resonance imaging activity in patients with multiple sclerosis. Mult Scler 4:178–182CrossRefPubMedGoogle Scholar
  25. Roxburgh RHSR, Seaman SR, Masterman T et al (2005) Multiple sclerosis severity score: using disability and disease duration to rate disease severity. Neurology 64:1144–1154CrossRefPubMedGoogle Scholar
  26. Russo C, Morabito F, Luise F et al (2008) Hyperhomocysteinemia is associated with cognitive impairment in multiple sclerosis. J Neurol 255:64–69CrossRefPubMedGoogle Scholar
  27. Salemi G, Gueli MC, Vitale F et al (2010) Blood lipids, homocysteine, stress factors and vitamins in clinically stable multiple sclerosis patients. Lipids Health Dis 9:19CrossRefPubMedPubMedCentralGoogle Scholar
  28. Seshadri S (2006) Elevated plasma homocysteine levels: risk factors or risk marker for the development of dementia and Alzheimer ‘s disease? J Alzheimers Dis 9:393–398CrossRefPubMedGoogle Scholar
  29. Sharief MK, Hentges R (1991) Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N Engl J Med 325:467–472CrossRefPubMedGoogle Scholar
  30. Skovierová H, Mahmood S, Blahovcová E et al (2015) Effect of homocysteine on survival of human glial cells. Physiol Res 64:747–754PubMedGoogle Scholar
  31. Skovierová H, Vidomanová E, Mahmood S et al (2016) The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int Mol Sci 17:E1733CrossRefGoogle Scholar
  32. Teunissen CE, Kilestein J, Kragt JJ et al (2008) Serum homocysteine levels in relation to clinical progression in multiple sclerosis. J Neurol Neurosurg Psychiatry 79:1349–1353CrossRefPubMedGoogle Scholar
  33. Wipfler P, Heikkinen A, Harrer A et al (2013) Circadian rhythmicity of inflammatory serum parameters: a neglected issue in the search of biomarkers in multiple sclerosis. J Neurol 260:221–227CrossRefPubMedGoogle Scholar
  34. Zhu Y, He ZY, Liu HN (2011) Meta-analysis of the relationship between homocysteine, vitamin B12, folate and multiple sclerosis. J Clin Neurosci 18:933–938CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sayonara Rangel Oliveira
    • 1
  • Tamires Flauzino
    • 2
  • Beatriz Sardinha Sabino
    • 3
  • Ana Paula Kallaur
    • 2
  • Daniela Frizon Alfieri
    • 2
  • Damacio Ramon Kaimen-Maciel
    • 4
  • Helena Kaminami Morimoto
    • 1
  • Elaine Regina Delicato de Almeida
    • 1
  • Marcell Alysson Batisti Lozovoy
    • 1
  • Edna Maria Vissoci Reiche
    • 1
  • Isaias Dichi
    • 5
  • Andréa Name Colado Simão
    • 1
  1. 1.Department of Pathology, Clinical Analysis and Toxicology, Health Sciences CenterUniversity Hospital, State University of LondrinaLondrinaBrazil
  2. 2.Postgraduate Program, Health Sciences CenterUniversity of LondrinaLondrinaBrazil
  3. 3.Applied Immunology LaboratoryUniversity of LondrinaLondrinaBrazil
  4. 4.Department of Clinical MedicineUniversity of LondrinaLondrinaBrazil
  5. 5.Department of Internal MedicineUniversity of LondrinaLondrinaBrazil

Personalised recommendations