Advertisement

Metabolic Brain Disease

, Volume 33, Issue 4, pp 1175–1185 | Cite as

Anxiolytic-like effects of paeoniflorin in an animal model of post traumatic stress disorder

  • Zhi-Kun Qiu
  • Jia-Li He
  • Xu Liu
  • Jia Zeng
  • Wei Xiao
  • Qing-Hong Fan
  • Xiao-Meng Chai
  • Wei-Hai Ye
  • Ji-Sheng Chen
Original Article

Abstract

Post-traumatic stress disorder (PTSD) is the serious psychiatric disorder. Paeoniflorin (PF) produces the antidepressant-like properties. However, few studies are concerned about its anti-PTSD-like effects and mechanisms. To investigate these, the single prolonged stress (SPS) model was utilized. PTSD-like behavioral deficits in rats after exposure to SPS were improved by PF (10 and 20 mg/kg, i.p.), evidenced by blocking increased freezing time in contextual fear paradigm (CFP) and increased time and entries in open arms in elevated plus maze (EPM) test without affecting the locomotor activity in open field (OF) test. We also found that increased levels of corticosterone (Cort), corticotropin releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) after exposure to SPS were reversed by PF (10 and 20 mg/kg, i.p.) in serum, respectively. Moreover, the decreased levels of serotonin (5-HT) and 5-Hydroxyindoleacetic acid (5-HIAA) in prefrontal cortex and hippocampus were reversed by PF (10 and 20 mg/kg, i.p.), respectively. In summary, the anti-PTSD-like activities of PF were associated with the modulation of HPA axis and 5-HT system activation.

Keywords

HPA axis Monoamines PF PTSD 

Notes

Acknowledgements

This study was supported by a grant from Natural Science Foundation of Guangdong Province, China (No. 2017A030313448), National Natural Science Foundation of China (No. 81703731) and Project of Educational Commission of Guangdong Province, China (No. 2016KQNCX086).

Author Contribution

Wei Xiao, Qing-Hong Fan, Xiao-Meng Chai and Wei-hai Ye have participated in the revised manuscript and the proof. They had contributed to the revision. Thus, we invited them in the publication.

Compliance with ethical standards

Competing interests

The authors have declared that no competing interests exist.

References

  1. Akana SF, Chu A, Soriano L, Dallman MF (2001) Corticosterone exerts site-specific and state-dependent effects in prefrontal cortex and amygdala on regulation of adrenocorticotropic hormone, insulin and fat depots. J Neuroendocrinol 13:625–637CrossRefPubMedGoogle Scholar
  2. Akiki TJ, Averill CL, Wrocklage KM, Schweinsburg B, Scott JC, Martini B et al (2017) The association of PTSD symptom severity with localized hippocampus and amygdala abnormalities. Chron Stress (Thousand Oaks).  https://doi.org/10.1177/2470547017724069
  3. Bentefour Y, Rakibi Y, Bennis M, Ba-M'hamed S, Garcia R (2016) Paroxetine treatment, following behavioral suppression of PTSD-like symptoms in mice, prevents relapse by activating the infralimbic cortex. Eur Neuropsychopharmacol 26:195–207CrossRefPubMedGoogle Scholar
  4. Beristianos MH, Yaffe K, Cohen B, Byers AL (2016) PTSD and risk of incident cardiovascular disease in aging veterans. Am J Geriatr Psychiatry 24:192–200CrossRefPubMedGoogle Scholar
  5. de Kloet CS, Vermetten E, Rademaker AR, Geuze E, Westenberg HG (2012) Neuroendocrine and immune responses to a cognitive stress challenge in veterans with and without PTSD. Eur J Psychotraumatol 3Google Scholar
  6. Eagle AL, Fitzpatrick CJ, Perrine SA (2013) Single prolonged stress impairs social and object novelty recognition in rats. Behav Brain Res 256:591–597CrossRefPubMedGoogle Scholar
  7. Echiverri-Cohen A, Zoellner LA, Gallop R, Feeny N, Jaeger J, Bedard-Gilligan M (2016) Changes in temporal attention inhibition following prolonged exposure and sertraline in the treatment of PTSD. J Consult Clin Psychol 84:415–426CrossRefPubMedPubMedCentralGoogle Scholar
  8. Eskandarian S, Vafaei AA, Vaezi GH, Taherian F, Kashefi A, Rashidy-Pour A (2013) Effects of systemic administration of oxytocin on contextual fear extinction in a rat model of post-traumatic stress disorder. Basic Clin Neurosci 4:315–322PubMedPubMedCentralGoogle Scholar
  9. Fenchel D, Levkovitz Y, Vainer E, Kaplan Z, Zohar J, Cohen H (2015) Beyond the HPA-axis: the role of the gonadal steroid hormone receptors in modulating stress-related responses in an animal model of PTSD. Eur Neuropsychopharmacol 25:944–957CrossRefPubMedGoogle Scholar
  10. Fernandez SP, Gaspar P (2012) Investigating anxiety and depressive-like phenotypes in genetic mouse models of serotonin depletion. Neuropharmacology 62:144–154CrossRefPubMedGoogle Scholar
  11. George SA, Rodriguez-Santiago M, Riley J, Rodriguez E, Liberzon I (2015) The effect of chronic phenytoin administration on single prolonged stress induced extinction retention deficits and glucocorticoid upregulation in the rat medial prefrontal cortex. Psychopharmacology 232:47–56CrossRefPubMedGoogle Scholar
  12. Han F, Yan S, Shi Y (2013) Single-prolonged stress induces endoplasmic reticulum-dependent apoptosis in the hippocampus in a rat model of post-traumatic stress disorder. PLoS One 8:e69340CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hosseinichimeh N, Rahmandad H, Wittenborn AK (2015) Modeling the hypothalamus-pituitary-adrenal axis: a review and extension. Math Biosci 268:52–65CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huang H, Zhao J, Jiang L, Xie Y, Xia Y, Lv R (2015) Paeoniflorin improves menopause depression in ovariectomized rats under chronic unpredictable mild stress. Int J Clin Exp Med 8:5103–5011PubMedPubMedCentralGoogle Scholar
  15. Jin ZL, Liu JX, Liu X, Zhang LM, Ran YH, Zheng YY et al (2016) Anxiolytic effects of GLYX-13 in animal models of posttraumatic stress disorder-like behavior. Psychopharmacol 30:913–921CrossRefGoogle Scholar
  16. Kao CY, Stalla G, Stalla J, Wotjak CT, Anderzhanova E (2015) Norepinephrine and corticosterone in the medial prefrontal cortex and hippocampus predict PTSD-like symptoms in mice. Eur J Neurosci 41:1139–1148CrossRefPubMedGoogle Scholar
  17. Kozaric-Kovacic D (2008) Psychopharmacotherapy of posttraumatic stress disorder. Croat Med J 49:459–475CrossRefPubMedPubMedCentralGoogle Scholar
  18. Krishnamurthy S, Garabadu D, Joy KP (2013) Risperidone ameliorates post-traumatic stress disorder-like symptoms in modified stress re-stress model. Neuropharmacology 75:62–77CrossRefPubMedGoogle Scholar
  19. Levkovitz Y, Fenchel D, Kaplan Z, Zohar J, Cohen H (2015) Early post-stressor intervention with minocycline, a second-generation tetracycline, attenuates post-traumatic stress response in an animal model of PTSD. Eur Neuropsychopharmacol 25:124–132CrossRefPubMedGoogle Scholar
  20. Li YF, Huang Y, Amsdell SL, Xiao L, O'Donnell JM, Zhang HT (2009) Antidepressant- and anxiolytic-like effects of the phosphodiesterase-4 inhibitor rolipram on behavior depend on cyclic AMP response element binding protein-mediated neurogenesis in the hippocampus. Neuropsychopharmacology 34:2404–2419CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li J, Ji X, Zhang J, Shi G, Zhu X, Wang K (2014) Paeoniflorin attenuates Aβ25-35-induced neurotoxicity in PC12 cells by preventing mitochondrial dysfunction. Folia Neuropathol 52:285–290CrossRefPubMedGoogle Scholar
  22. Lin CC, Tung CS, Lin PH, Huang CL, Liu YP (2016a) Traumatic stress causes distinctive effects on fear circuit catecholamines and the fear extinction profile in a rodent model of posttraumatic stress disorder. Eur Neuropsychopharmacol 26:1484–1495CrossRefPubMedGoogle Scholar
  23. Lin CC, Tung CS, Liu YP (2016b) Escitalopram reversed the traumatic stress-induced depressed and anxiety-like symptoms but not the deficits of fear memory. Psychopharmacology 233:1135–1146CrossRefPubMedGoogle Scholar
  24. MacNamara A, Rabinak CA, Kennedy AE, Fitzgerald DA, Liberzon I, Stein MB et al (2016) Emotion regulatory brain function and SSRI treatment in PTSD: neural correlates and predictors of change. Neuropsychopharmacology 41:611–618CrossRefPubMedGoogle Scholar
  25. Mao QQ, Ip SP, Tsai SH, Che CT (2008) Antidepressant-like effect of peony glycosides in mice. J Ethnopharmacol 119:272–275CrossRefPubMedGoogle Scholar
  26. McKlveen JM, Myers B, Flak JN, Bundzikova J, Solomon MB, Seroogy KB et al (2013) Role of prefrontal cortex glucocorticoid receptors in stress and emotion. Biol Psychiatry 74:672–679CrossRefPubMedPubMedCentralGoogle Scholar
  27. Miao YL, Guo WZ, Shi WZ, Fang WW, Liu Y, Liu J et al (2014) Midazolam ameliorates the behavior deficits of a rat posttraumatic stress disorder model through dual 18 kDa translocator protein and central benzodiazepine receptor and neurosteroidogenesis. PLoS One 9:e101450CrossRefPubMedPubMedCentralGoogle Scholar
  28. Muhtz C, Wiedemann K, Kellner M (2012) Panicogens in patients with Post-Traumatic Stress Disorder (PTSD). Curr Pharm Des 18:5608–5618CrossRefPubMedGoogle Scholar
  29. Nam KN, Yae CG, Hong JW, Cho DH, Lee JH, Lee EH (2013) Paeoniflorin, a monoterpene glycoside, attenuates lipopolysaccharide-induced neuronal injury and brain microglial inflammatory response. Biotechnol Lett 35:1183–1189CrossRefPubMedGoogle Scholar
  30. Oitzl MS, de Kloet ER (1992) Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behav Neurosci 106:62–71CrossRefPubMedGoogle Scholar
  31. Oliveira TQ, Sousa CNS, Vasconcelos GS, de Sousa LC, de Oliveira AA, Patrocínio CFV et al (2017) Brain antioxidant effect of mirtazapine and reversal of sedation by its combination with alpha-lipoic acid in a model of depression induced by corticosterone. J Affect Disord 219:49–57CrossRefPubMedGoogle Scholar
  32. Ondicova K, Kvetnansky R, Mravec B (2014) Deafferentation of the hypothalamic paraventricular nucleus (PVN) exaggerates the sympathoadrenal system activity in stressed rats. Endocr Regul 48:135–143CrossRefPubMedGoogle Scholar
  33. Pervanidou P, Chrousos GP (2012) Posttraumatic stress disorder in children and adolescents: neuroendocrine perspectives. Sci Signal 5:pt6.  https://doi.org/10.1126/scisignal.2003327 CrossRefPubMedGoogle Scholar
  34. Qiu F, Zhong X, Mao Q, Huang Z (2013) The antidepressant-like effects of paeoniflorin in mouse models. Exp Ther Med 5:1113–1116CrossRefPubMedPubMedCentralGoogle Scholar
  35. Qiu ZK, Liu CH, Gao ZW, He JL, Liu X, Wei QL et al (2016) The inulin-type oligosaccharides extract from morinda officinalis, a traditional Chinese herb, ameliorated behavioral deficits in an animal model of post-traumatic stress disorder. Metab Brain Dis 31:1143–1149CrossRefPubMedGoogle Scholar
  36. Raineki C, Chew L, Mok P, Ellis L, Weinberg J (2016) Short- and long-term effects of stress during adolescence on emotionality and HPA function of animals exposed to alcohol prenatally. Psychoneuroendocrinology 74:13–23CrossRefPubMedPubMedCentralGoogle Scholar
  37. Reid AM, McNamara JP, Murphy TK, Guzick AG, Storch EA, Goodman WK et al (2015) Side-effects of SSRIs disrupt multimodal treatment for pediatric OCD in a randomized-controlled trial. J Psychiatr Res 71:140–147CrossRefPubMedPubMedCentralGoogle Scholar
  38. Roozendaal B, Phillips RG, Power AE, Brooke SM, Sapolsky RM, McGaugh JL (2001) Memory retrieval impairment induced by hippocampal CA3 lesions is blocked by adrenocortical suppression. Nat Neurosci 4:1169–1171CrossRefPubMedGoogle Scholar
  39. Santos CJ, Ferreira AV, Oliveira AL, Oliveira MC, Gomes JS, Aguiar DC (2016) Carbohydrate-enriched diet predispose to anxiety and depression-like behavior after stress in mice. Nutr Neurosci 29:1–7Google Scholar
  40. Uschold-Schmidt N, Peterlik D, Füchsl AM, Reber SO (2013) HPA axis changes during the initial phase of psychosocial stressor exposure in male mice. J Endocrinol 218:193–203CrossRefPubMedGoogle Scholar
  41. van Rooij SJH, Stevens JS, Ely TD, Hinrichs R, Michopoulos V, Winters SJ, Ogbonmwan YE (2017) The role of the hippocampus in predicting future posttraumatic stress disorder symptoms in recently traumatized civilians. Biol Psychiatry.  https://doi.org/10.1016/j.biopsych.2017.09.005
  42. Wang HN, Peng Y, Tan QR, Wang HH, Chen YC, Zhang RG et al (2009) Free and Easy Wanderer Plus (FEWP), a polyherbal preparation, ameliorates PTSD-like behavior and cognitive impairments in stressed rats. Prog Neuro-Psychopharmacol Biol Psychiatry 33:1458–1463CrossRefGoogle Scholar
  43. Wang QS, Gao T, Cui YL, Gao LN, Jiang HL (2014) Comparative studies of paeoniflorin and albiflorin from Paeonia lactiflora on anti-inflammatory activities. Pharm Biol 52:1189–1195CrossRefPubMedGoogle Scholar
  44. Wang YL, Wang JX, Hu XX, Chen L, Qiu ZK, Zhao N et al (2016) Antidepressant-like effects of albiflorin extracted from Radix paeoniae Alba. J Ethnopharmacol 179:9–15CrossRefPubMedGoogle Scholar
  45. Wen L, Xiao B, Shi Y, Han F (2017) PERK signalling pathway mediates single prolonged stress-induced dysfunction of medial prefrontal cortex neurons. Apoptosis 22:753–768CrossRefPubMedGoogle Scholar
  46. Wilson CB, Ebenezer PJ, McLaughlin LD, Francis J (2014) Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex. PLoS One 9:e89104CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xue R, Jin ZL, Chen HX, Yuan L, He XH, Zhang YP et al (2013) Antidepressant-like effects of 071031B, a novel serotonin and norepinephrine reuptake inhibitor. Eur Neuropsychopharmacol 23:728–741CrossRefPubMedGoogle Scholar
  48. Ye J, Duan H, Yang X, Yan W, Zheng X (2001) Anti-thrombosis effect of paeoniflorin: evaluated in a photochemical reaction thrombosis model in vivo. Planta Med 67:766–767CrossRefPubMedGoogle Scholar
  49. Yehuda R, Pratchett LC, Elmes MW, Lehrner A, Daskalakis NP, Koch E et al (2014) Glucocorticoid-related predictors and correlates of post-traumatic stress disorder treatment response in combat veterans. Interface Focus 4:20140048CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhang YH (2014) The treatment and research for posttraumatic stress disorder with Chinese medicine. Eur J Psychotraumatol 5:26524CrossRefPubMedGoogle Scholar
  51. Zhang LM, Yao JZ, Li Y, Li K, Chen HX, Zhang YZ et al (2012) Anxiolytic effects of flavonoids in animal models of posttraumatic stress disorder. Evid Based Complement Alternat Med 2012:623753PubMedPubMedCentralGoogle Scholar
  52. Zhang LM, Qiu ZK, Zhao N, Chen HX, Liu YQ, Xu JP et al (2014) Anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in animal models of post-traumatic stress disorder. Int J Neuropsychopharmacol 17:1659–1669CrossRefPubMedGoogle Scholar
  53. Zhao Y, Ma R, Shen J, Su H, Xing D, Du L (2008) A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581:113–120CrossRefPubMedGoogle Scholar
  54. Zhe D, Fang H, Yuxiu S (2008) Expressions of hippocampal mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the single-prolonged stress-rats. Acta Histochem Cytochem 41:89–95CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhi-Kun Qiu
    • 1
    • 2
  • Jia-Li He
    • 3
  • Xu Liu
    • 4
  • Jia Zeng
    • 1
  • Wei Xiao
    • 2
  • Qing-Hong Fan
    • 2
  • Xiao-Meng Chai
    • 2
  • Wei-Hai Ye
    • 5
  • Ji-Sheng Chen
    • 1
  1. 1.Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical UniversityClinical Pharmacy Department of Guangdong Pharmaceutical UniversityGuangzhouPeople’s Republic of China
  2. 2.Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of PharmacyJinan UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of EndocrinologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouPeople’s Republic of China
  4. 4.Pharmacy DepartmentGeneral Hospital of Chinese People’s Armed Police ForcesBeijingPeople’s Republic of China
  5. 5.The Affiliated Chencun Hospital of Shunde HospitalSouthern Medical UniversityFoshanPeople’s Republic of China

Personalised recommendations