Advertisement

Metabolic Brain Disease

, Volume 33, Issue 4, pp 1045–1051 | Cite as

Interplay between adenosine receptor antagonist and cyclooxygenase inhibitor in haloperidol-induced extrapyramidal effects in mice

  • Devinder Arora
  • Jayesh Mudgal
  • Madhavan Nampoothiri
  • Sanchari Basu Mallik
  • Manas Kinra
  • Susan Hall
  • Shailendra Anoopkumar-Dukie
  • Gary D. Grant
  • Chamallamudi Mallikarjuna Rao
Original Article

Abstract

Antipsychotic drugs are the mainstay of psychotic disorders. The ‘typical’ antipsychotic agents are commonly employed for the positive symptoms of schizophrenia, though at an expense of extrapyramidal side effects (EPS). In the present study, we employed haloperidol (HP)-induced catalepsy model in mice to evaluate the role of adenosine receptor antagonist and cyclooxygenase (COX) enzyme inhibitor in the amelioration of EPS. HP produced a full blown catalepsy, akinesia and a significant impairment in locomotion and antioxidant status. Pre-treatment with COX inhibitor; naproxen (NPx) and adenosine receptor antagonist; caffeine (CAF), showed a significant impact on HP-induced cataleptic symptoms. Adenosine exerts pivotal control on dopaminergic receptors and is also involved in receptor internalization and recycling. On the other hand, prostaglandins (PGs) are implicated as neuro-inflammatory molecules released due to microglial activation in both Parkinson’s disease (PD) and antipsychotics-induced EPS. The involvement of these neuroeffector molecules has led to the possibility of use of CAF and COX inhibitors as therapeutic approaches to reduce the EPS burden of antipsychotic drugs. Both these pathways seem to be interlinked to each other, where adenosine modulates the formation of PGs through transcriptional modulation of COXs. We observed an additive effect with combined treatment of NPx and CAF against HP-induced movement disorder. These effects lead us to propose that neuromodulatory pathways of dopaminergic circuitry need to be explored for further understanding and utilizing the full therapeutic potential of antipsychotic agents.

Keywords

Extrapyramidal side effects Akinesia Catalepsy Caffeine Naproxen 

Notes

Funding

This work was supported by the funds from School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD, Australia.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

References

  1. Aïd S, Bosetti F (2011) Targeting cyclooxygenases-1 and-2 in neuroinflammation: therapeutic implications. Biochimie 93:46–51CrossRefPubMedGoogle Scholar
  2. Ascherio A, Zhang SM, Hernán MA et al (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63CrossRefPubMedGoogle Scholar
  3. Baldessarini RJ, Tarsy D (1980) Dopamine and the pathophysiology of dyskinesias induced by antipsychotic drugs. Annu Rev Neurosci 3:23–39CrossRefPubMedGoogle Scholar
  4. Bartlett SE, Enquist J, Hopf FW et al (2005) Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci U S A 102:11521–11526CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO et al (2011) On the existence of a possible A 2A–D 2–β-Arrestin2 complex: A2A agonist modulation of D2 agonist-induced β-Arrestin2 recruitment. J Mol Biol 406:687–699CrossRefPubMedGoogle Scholar
  6. Chen J-F, Xu K, Petze JP et al (2001) Neuroprotection by caffeine and A (2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC 143CrossRefGoogle Scholar
  7. Costall B, Naylor RJ (1973) Neuroleptic and non-neuroleptic catalepsy. Arzneim Forsc 23:674–683Google Scholar
  8. Dold M, Samare MT, Li C et al (2015) Haloperidol versus first-generation antipsychotics for the treatment of schizophrenia and other psychotic disorders. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD009831.pub2
  9. El Yacoubi M, Ledent C, Menard JF et al (2000) The stimulant effects of caffeine on locomotor hehaviour in mice are mediated through its blockage of adenosie A2A receptors. Bri J Pharmacol 129:1465–1473CrossRefGoogle Scholar
  10. Fiebich BL, Lieb K, Hull M et al (2000) Effects of caffeine and paracetamol alone or in combination with acetylsalicylic acid on prostaglandin E2 synthesis in rat microglial cells. Neuropharmacology 39:2205–2213CrossRefPubMedGoogle Scholar
  11. Fiebich BL, Biber K, Lieb K et al (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. GLIA 18:152–160CrossRefPubMedGoogle Scholar
  12. Fujita KA, Ostaszewski M, Matsuoka Y et al (2014) Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol Neurobiol 49:88–102CrossRefPubMedGoogle Scholar
  13. Glazer WM (2000) Extrapyramidal side effets, tardive dyskinesia, and the concept of atypicality. J Clin Psychiatry 61(Suppl 3):16–21PubMedGoogle Scholar
  14. Ginovart N, Wilson AA, Hussey D, Houle S, Kapur S (2009) D2-receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-raclopride PET study in cats. Neuropsychopharmacology 34:662–671CrossRefPubMedGoogle Scholar
  15. Hall S, Desbrow B, Anoopkumar-Dukie S et al (2015) A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responsed linked to depression. Food Res Int 76:626–636CrossRefPubMedGoogle Scholar
  16. Hall S, Arora D, Anoopkumar-Dukie S, Grant GD (2016) Effect of coffee in lipopolysaccharide-induced indoleamine 2,3-dioxygenase activation and depressive-like behavior in mice. J Agric Food Chem 64:8745–8754CrossRefPubMedGoogle Scholar
  17. Hornyckiewicz O (1973) Dopamine in the basal ganglia. Its role and therapeutic implications (including the clinical use of L-DOPA). Br Med Bull 29:172–178CrossRefGoogle Scholar
  18. Hurley MJ, Mash DC, Jenner P (2000) Adenosine A(2A) receptor mRNA expression in Parkinson’s disease. Neurosci Lett 291:54–58CrossRefPubMedGoogle Scholar
  19. Jackson MJ, Al-Barghouthy G, Pearce RK et al (2004) Effect of 5-HT 1B/D receptor agonist and antagonist administration on motor function in haloperidol and MPTP-treated common marmosets. Pharmacol Biochem Behav 79:391–400CrossRefPubMedGoogle Scholar
  20. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540CrossRefPubMedGoogle Scholar
  21. Jin J, Shie FS, Liu I et al (2007) Prostaglandin E 2 receptor subtype 2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated α-synuclein. J Neuroinflammation 4:2.  https://doi.org/10.1186/1742-2094-4-2 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kafka SH, Corbett R (1996) Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia. Eur J Pharmacol 295:147–154CrossRefPubMedGoogle Scholar
  23. Kawano T, Anrather J, Zhou P et al (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12:225–229CrossRefPubMedGoogle Scholar
  24. Kikuchi T, Tottori K, Uwahodo Y et al (1995) 7-{4-[4-(2,3-Dichlorophenyl)-1-Piperazinyl]Butyloxy}-3,4-Dihydro-2(1H)-Quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 274:329–336PubMedGoogle Scholar
  25. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484CrossRefPubMedGoogle Scholar
  26. Li Y, Roy BD, Wang W et al (2012) Identification of two functionally distinct endosomal recycling pathways for dopamine D2 receptor. J Neurosci 32:7178–7190CrossRefPubMedGoogle Scholar
  27. Lima IV, Bastos LF, Limborço-Filho M, Fiebich BL, de Oliveira AC (2012) Role of prostaglandins in neuroinflammatory and neurodegenerative diseases. Mediat Inflamm 2012:1–13.  https://doi.org/10.1155/2012/946813 CrossRefGoogle Scholar
  28. Lizuka Y, Sei Y, Weinberger DR, Straub RE (2007) Evidence that the BLOC-1 protein dysbindin modulates dopamine D2 receptor internalization and signaling but not D1 internalization. J Neurosci 27:12390–12395CrossRefGoogle Scholar
  29. Lucas G, Bonhomme N, De Deurwaerdère P, Le Moal M, Spampinato U (1997) 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 131:57–63CrossRefPubMedGoogle Scholar
  30. Luong C, Miller A, Barnett J et al (1996) Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat Struct Biol 3:927–933CrossRefPubMedGoogle Scholar
  31. Malec D (1996) Haloperidol-induced catalepsy is influenced by adenosine receptor antagonists. Pol J Pharmacol 49:323–327Google Scholar
  32. Marshall JF, Berrios N (1979) Movement disorders of aged rats: reversal by dopamine receptor stimulation. Science 206:477–479CrossRefPubMedGoogle Scholar
  33. Miller DD, Caroff SN, Davis SM et al (2008) Extrapyramidal side-effects of antipsychotics in a randomised trial. B J Psych 193:279–288CrossRefGoogle Scholar
  34. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78CrossRefPubMedGoogle Scholar
  35. Moo-Puc RE, Góngora-Alfaro JL, Alvarez-Cervera FJ et al (2003) Caffeine and muscarinic antagonists act in synergy to inhibit haloperidol-induced catalepsy. Neuropharmacology 45:493–503CrossRefPubMedGoogle Scholar
  36. Naidu PS, Kulkarni SK (2001) Possible involvment of prostaglandins in haliperidol-induced orofacial dyskinesia in rats. Eur J Pharmacol 430:295–298CrossRefPubMedGoogle Scholar
  37. Naidu PS, Kulkarni SK (2002) Differential effects of cyclooxygenase inhibitors on haloperidol-induced catalepsy. Prog Neuro-Psychopharmacol Biol Psychiatry 26:819–822CrossRefGoogle Scholar
  38. O'Connor JC, Lawson MA, Andre A et al (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3 -dioxygenase activation in mice. Mol Psychiatry 14:511–522CrossRefPubMedGoogle Scholar
  39. Ono N, Saito R, Abiru T, Kamiya HO, Furukawa T (1986) Possible involvement of prostaglandins in cataleptic behavior in rats. Pharmacol Biochem Behav 25:463–467CrossRefPubMedGoogle Scholar
  40. Ono N, Abiru T, Sugiyama K, Kamiya H (1992) Influences of cyclooxygenase inhibitors on the cataleptic behavior induced by haloperidol in mice. Prostag Leukotr Ess Fatty Acids 46:59–63CrossRefGoogle Scholar
  41. Quan Y, Jiang J, Dingledine R (2013) EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem 288:9293–9202CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ross GW, Abbott RD, Petrovitch H et al (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679CrossRefPubMedGoogle Scholar
  43. Sanberg PR (1980) Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nature 284:472–473CrossRefPubMedGoogle Scholar
  44. Salin-Pascual RJ (2012) Sleep, adenosine and caffeine as tools for the early diagnosis of Parkinson disease. Open Sleep J 5:59–66CrossRefGoogle Scholar
  45. Stayte S, Vissel B (2014) Advances in non-dopaminergic treatments for Parkinson’s disease. Front Neurosci 8:113PubMedPubMedCentralGoogle Scholar
  46. Tanaka Y, Furuyashiki T, Momiyama T et al (2009) Prostaglandin E receptor EP1 enhances GABA-mediated inhibition of dopaminergic neurons in the substantia nigra pars compacta and regulates dopamine level in the dorsal striatum. Eur J Neurosci 30:2338–2346CrossRefPubMedGoogle Scholar
  47. Teismann P, Tieu K, Choi DK et al (2003) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci 29:5473–5478CrossRefGoogle Scholar
  48. Teismann P (2012) COX-2 in the neurodegenerative process of Parkinson’s disease. Biofactors 38:395–397CrossRefPubMedPubMedCentralGoogle Scholar
  49. Trevitt J, Vallance C, Harris A, Goode T (2009) Adenosine antagonists reverse the cataleptic effects of haloperidol: implications for the treatment of Parkinson’s disease. Pharmacol Biochem Behav 92:521–527CrossRefPubMedGoogle Scholar
  50. Wang S, Hu LF, Yang Y, Ding JH, Hu G (2005) Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson’s disease: implications for treating Parkinson’s disease? Neuropharmacology 48:984–992CrossRefPubMedGoogle Scholar
  51. Wanibuchi F, Usuda S (1990) Synergistic effects between D-1 and D-2 dopamine antagonists on catalepsy in rats. Psychopharmacology 102:339–342CrossRefPubMedGoogle Scholar
  52. Weihmuller FB, Hadjiconstantinou M, Bruno JP (1989) Dissociation between biochemical and behavioral recovery in MPTP-treated mice. Pharmacol Biochem Behav 34:113–117CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Devinder Arora
    • 1
    • 2
    • 3
    • 4
  • Jayesh Mudgal
    • 4
  • Madhavan Nampoothiri
    • 4
  • Sanchari Basu Mallik
    • 4
  • Manas Kinra
    • 4
  • Susan Hall
    • 1
    • 2
    • 3
  • Shailendra Anoopkumar-Dukie
    • 1
    • 2
    • 3
  • Gary D. Grant
    • 1
    • 2
    • 3
  • Chamallamudi Mallikarjuna Rao
    • 4
  1. 1.School of Pharmacy and PharmacologyGriffith UniversityGold CoastAustralia
  2. 2.Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
  3. 3.Quality Use of Medicines NetworkGriffith UniversityGold CoastAustralia
  4. 4.Department of Pharmacology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalIndia

Personalised recommendations