Metabolic Brain Disease

, Volume 32, Issue 4, pp 1069–1072 | Cite as

Late onset MELAS with m.3243A > G mutation and its association with aneurysm formation

  • Kun Zhu
  • Shuang Li
  • Huan Chen
  • Yao Wang
  • Miao Yu
  • Hongyan Wang
  • Weijie Zhao
  • Yunpeng CaoEmail author
Original Article


We reported a 53-year-old with late-onset mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) accompanied by aneurysm and large vessel dilations. Most studies have focused on microangiopathy causing stroke-like episodes. We report a case to describe large vessel involvement in clinical considerations, and possible mechanisms of aneurysm formation. We recommended regular angiographic examination for patients with MELAS.


MELAS Aneurysm Nitric oxide synthase Apoptosis 



mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke like episodes


N-acetyl aspartate


nitric oxide


endothelial nitric oxide synthase


unruptured intracranial aneurysm


digital subtraction angiography


intracranial aneurysm




damage associated molecular patterns


cytochrome c oxidase


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bown MJ, Lloyd GM, Sandford RM, Thompson JR, London NJ, Samani NJ, Sayers RD (2007) The interleukin-10-1082 'A' allele and abdominal aortic aneurysms. J Vasc Surg 46:687–693. doi: 10.1016/j.jvs.2007.06.025 CrossRefPubMedGoogle Scholar
  2. Brunetti-Pierri N et al (2011) Dilation of the aortic root in mitochondrial disease patients. Mol Genet Metab 103:167–170. doi: 10.1016/j.ymgme.2011.02.007 CrossRefPubMedGoogle Scholar
  3. El-Hattab AW, Emrick LT, Craigen WJ, Scaglia F (2012a) Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders. Mol Genet Metab 107:247–252. doi: 10.1016/j.ymgme.2012.06.018 CrossRefPubMedGoogle Scholar
  4. El-Hattab AW, Hsu JW, Emrick LT, Wong LJ, Craigen WJ, Jahoor F, Scaglia F (2012b) Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation. Mol Genet Metab 105:607–614. doi: 10.1016/j.ymgme.2012.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  5. El-Hattab AW, Adesina AM, Jones J, Scaglia F (2015) MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab 116:4–12. doi: 10.1016/j.ymgme.2015.06.004 CrossRefPubMedGoogle Scholar
  6. El-Hattab AW et al (2016) Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation. Mol Genet Metab 117:407–412. doi: 10.1016/j.ymgme.2016.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Finsterer J, Zarrouk-Mahjoub S (2016) Mitochondrial vasculopathy. World J Cardiol 8:333–339. doi: 10.4330/wjc.v8.i5.333 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fukuyama K, Ishikawa Y, Ogino T, Inoue H, Yamaoka R, Hirose T, Nishihira T (2012) Mucosal necrosis of the small intestine in myopathy, encephalopathy, lactic acidosis, and stroke-like episodes syndrome. World J Gastroenterol 18:5986–5989. doi: 10.3748/wjg.v18.i41.5986 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gabrielson M et al (2016) Altered PPARgamma Coactivator-1 alpha expression in abdominal aortic aneurysm: possible effects on mitochondrial biogenesis. J Vasc Res 53:17–26. doi: 10.1159/000446653 CrossRefPubMedGoogle Scholar
  10. Lindeman JH, Abdul-Hussien H, Schaapherder AF, Van Bockel JH, Von der Thusen JH, Roelen DL, Kleemann R (2008) Enhanced expression and activation of pro-inflammatory transcription factors distinguish aneurysmal from atherosclerotic aorta: IL-6- and IL-8-dominated inflammatory responses prevail in the human aneurysm. Clin Sci (Lond) 114:687–697. doi: 10.1042/CS20070352 CrossRefGoogle Scholar
  11. Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP (1984) Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol 16:481–488. doi: 10.1002/ana.410160409 CrossRefPubMedGoogle Scholar
  12. Ping P et al (2015) Harnessing the power of integrated mitochondrial biology and physiology: a special report on the NHLBI mitochondria in heart diseases initiative. Circ Res 117:234–238. doi: 10.1161/CIRCRESAHA.117.306693 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Raju R et al (2016) Dermal γδ T-cells can Be activated by mitochondrial damage-associated molecular patterns. PLoS One 11:e0158993. doi: 10.1371/journal.pone.0158993 CrossRefGoogle Scholar
  14. Schaefer AM, Phoenix C, Elson JL, McFarland R, Chinnery PF, Turnbull DM (2006) Mitochondrial disease in adults: a scale to monitor progression and treatment. Neurology 66:1932–1934. doi: 10.1212/01.wnl.0000219759.72195.41 CrossRefPubMedGoogle Scholar
  15. Schüll S et al (2015) Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6. Cell Death and Disease 6:e1691. doi: 10.1038/cddis.2015.62 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Sinha I, Sinha-Hikim AP, Hannawa KK, Henke PK, Eagleton MJ, Stanley JC, Upchurch GR Jr (2005) Mitochondrial-dependent apoptosis in experimental rodent abdominal aortic aneurysms. Surgery 138:806–811. doi: 10.1016/j.surg.2005.07.011 CrossRefPubMedGoogle Scholar
  17. Srinivasan S, Avadhani NG (2012) Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med 53:1252–1263. doi: 10.1016/j.freeradbiomed.2012.07.021 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Srinivasan S, Spear J, Chandran K, Joseph J, Kalyanaraman B, Avadhani NG (2013) Oxidative stress induced mitochondrial protein kinase a mediates cytochrome c oxidase dysfunction. PLoS One 8:e77129. doi: 10.1371/journal.pone.0077129 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Takahashi N et al (2005) Vascular involvement in a patient with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. The American journal of the medical sciences 329:265–266CrossRefPubMedGoogle Scholar
  20. Tamura T, Jamous MA, Kitazato KT, Yagi K, Tada Y, Uno M, Nagahiro S (2009) Endothelial damage due to impaired nitric oxide bioavailability triggers cerebral aneurysm formation in female rats. J Hypertens 27:1284–1292. doi: 10.1097/HJH.0b013e328329d1a7 CrossRefPubMedGoogle Scholar
  21. Tay SH, Nordli DR Jr, Bonilla E, Null E, Monaco S, Hirano M, DiMauro S (2006) Aortic rupture in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes. Arch Neurol 63:281–283. doi: 10.1001/archneur.63.2.281 CrossRefPubMedGoogle Scholar
  22. Vattemi G et al (2011) Increased protein nitration in mitochondrial diseases: evidence for vessel wall involvement. Molecular & cellular proteomics : MCP 10:M110.002964. doi: 10.1074/mcp.M110.002964 CrossRefGoogle Scholar
  23. Wang S, Wu S, Zheng T, Yang Z, Ma X, Jia W, Xiang K (2013) Mitochondrial DNA mutations in diabetes mellitus patients in Chinese Han population. Gene 531:472–475. doi: 10.1016/j.gene.2013.09.019 CrossRefPubMedGoogle Scholar
  24. Wang F, Quan QQ, Zhang CL, Li YB, Jiang TB (2015) Association between polymorphisms in the interleukin-10 gene and risk of abdominal aortic aneurysm. Genet Mol Res 14:17599–17604. doi: 10.4238/2015.December.21.32 CrossRefPubMedGoogle Scholar
  25. Wiebers DO et al. (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet (London, England) 362:103–110Google Scholar
  26. Yang C, Qi ZY, Shao C, Xing WK, Wang Z (2015) Association between three eNOS polymorphisms and intracranial aneurysms risk: a meta-analysis. Medicine (Baltimore) 94:e452. doi: 10.1097/MD.0000000000000452 CrossRefGoogle Scholar
  27. Yatsuga S et al (2012) MELAS: a nationwide prospective cohort study of 96 patients in Japan. Biochim Biophys Acta 1820:619–624. doi: 10.1016/j.bbagen.2011.03.015 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kun Zhu
    • 1
    • 2
  • Shuang Li
    • 1
  • Huan Chen
    • 1
  • Yao Wang
    • 1
  • Miao Yu
    • 1
    • 3
  • Hongyan Wang
    • 4
  • Weijie Zhao
    • 5
  • Yunpeng Cao
    • 1
    Email author
  1. 1.Department of NeurologyFirst Affiliated Hospital of China Medical UniversityShenyangChina
  2. 2.The 96th Class, 7-Year ProgramChina Medical UniversityShenyangChina
  3. 3.The 97th Class, 7-Year ProgramChina Medical UniversityShenyangChina
  4. 4.Department of CadreThe Central Hospital of Jiamusi CityJiamusiChina
  5. 5.Department of NeurologyCapital Medical University Affiliated Beijing Friendship HospitalBeijingChina

Personalised recommendations