Skip to main content

Advertisement

Log in

Evidence for interactions between homocysteine and genistein: insights into stroke risk and potential treatment

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Elevated plasma homocysteine (2-amino-4-sulfanylbutanoic acid) level is a risk factor for stroke. Moreover, it has been suggested that high levels of homocysteine in the acute phase of an ischemic stroke can predict mortality, especially in stroke patients with the large-vessel atherosclerosis subtype. In clinical studies, supplementation with genistein (5, 7-dihydroxy-3- (4-hydroxyphenyl)-4H-1-benzopyran-4-one) decreased plasma homocysteine levels considerably. Therefore, genistein could be considered as a potential drug for prevention and/or treatment of stroke. However, the mechanism of the effect of genistein on homocysteine level remains to be elucidated. In this report, direct functional interactions between homocysteine and genistein are demonstrated in in vitro experimental systems for determination of methylenetetrahydrofolate reductase (MetF) and glutathione peroxidase (GPx) activities, reconstructed with purified compounds, and in a simple in vivo system, based on measurement of growth rate of Vibrio harveyi and Bacillus subtilis cultures. Results of molecular modelling indicated that homocysteine can directly interact with genistein. Therefore, genistein-mediated decrease in plasma levels of homocysteine, and alleviation of biochemical and physiological effects of one of these compounds by another, might be ascribed to formation of homocysteine-genistein complexes in which biological activities of these molecules are abolished or alleviated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 25;262(12):5592-5

  • Bailey L, Gregory J III (1999) Polymorphism of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risk and impact on folate requirement. J Nutr 129:919–922

    CAS  PubMed  Google Scholar 

  • Banecka-Majkutewicz Z, Sawuła W, Kadziński L, Węgrzyn A, Banecki B (2012) Homocysteine, heat shock proteins, genistein and vitamins in ischemic stroke--pathogenic and therapeutic implications. Acta Biochim Pol 59(4):495–499

    CAS  PubMed  Google Scholar 

  • Belas R, Mileham A, Cohn D, Hilmen M, Simon M, Silverman M (1982) Bacterial luminescence: isolation and expression of the luciferase genes from Vibrio harveyi. Science 218:791–793

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Bakhiet R, Hart V, Holtzman G (2005) Isoflavones improve plasma homocysteine status and antioxidant defense system in healthy young men at rest but do not ameliorate oxidative stress induced by 80% VO2pk exercise. Ann Nutr Metab 49(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wu P, Zhou L, Shen Y, Li Y, Song H (2015) Relationship between increase of serum homocysteine caused by smoking and oxidative damage in elderly patients with cardiovascular disease. Int J Clin Exp Med 8(3):4446–4454

    CAS  PubMed  PubMed Central  Google Scholar 

  • D'Anna R, Baviera G, Corrado F, Cancellieri F, Crisafulli A, Squadrito F (2005) The effect of the phytoestrogen genistein and hormone replacement therapy on homocysteine and C-reactive protein level in postmenopausal women. Acta Obstet Gynecol Scand 84(5):474–477

    Article  PubMed  Google Scholar 

  • Durmaz A, Dikmen N (2007) Homocysteine effects on cellular glutathione peroxidase (GPx-1) activity under in vitro conditions. J Enzyme Inhib Med Chem 22(6):733–738

    Article  CAS  PubMed  Google Scholar 

  • Fuchs D, Erhard P, Rimbach G, Daniel H, Wenzel U (2005) Genistein blocks homocysteine-induced alterations in the proteome of human endothelial cells. Proteomics 5(11):2808–2818

    Article  CAS  PubMed  Google Scholar 

  • Fuchs D, Dirscherl B, Schroot JH, Daniel H, Wenzel U (2006) Soy extract has different effects compared with the isolated isoflavones on the proteome of homocysteine-stressed endothelial cells. Mol Nutr Food Res 50(1):58–69

    Article  CAS  PubMed  Google Scholar 

  • Grabowski M, Banecki B, Kadziński L, Jakóbkiewicz-Banecka J, Kaźmierkiewicz R, Gabig-Cimińska M, Węgrzyn G, Węgrzyn A, Banecka-Majkutewicz Z (2015) Genistein inhibits activities of methylenetetrahydrofolate reductase and lactate dehydrogenase, enzymes which use NADH as a substrate. Biochem Biophys Res Commun 465:363–367

    Article  CAS  PubMed  Google Scholar 

  • Guenther B, Sheppard C, Tran P, Rozen R, Matthews R, Ludwig M (1999) The structure and properties of methylenetetrahydrofolate reductase from Escherichia Coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol 6:359–365

    Article  CAS  PubMed  Google Scholar 

  • Han L, Wu Q, Wang C, Hao Y, Zhao J, Zhang L, Fan R, Liu Y, Li R, Chen Z, Zhang T, Chen S, Ma J, Liu S, Peng X, Duan S (1999) Homocysteine, ischemic stroke, and coronary heart disease in hypertensive patients: a population-based, prospective cohort study. Stroke 46(7):1777–1786

    Article  Google Scholar 

  • Han S, Wu H, Li W, Gao P (2015) Protective effects of genistein in homocysteine-induced endothelial cell inflammatory injury. Mol Cell Biochem 403(1–2):43–49

    Article  CAS  PubMed  Google Scholar 

  • Jakóbkiewicz-Banecka J, Kloska A, Stepnowska M, Banecki B, Wegrzyn A, Wegrzyn G. (2005) A bacterial model for studying effects of human mutations in vivo: Escherichia coli strains mimicking a common polymorphism in the human MTHFR gene. Mutat Res 15;578(1–2):175–86

  • Klein G, Żmijewski M, Krzewska J, Czeczatka M, Lipińska B (1998) Cloning and characterization of the dnaK heat shock operon of the marine bacterium Vibrio harveyi. Mol Gen Genet 259:179–189

    Article  CAS  PubMed  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  CAS  PubMed  Google Scholar 

  • Marini H, Bitto A, Altavilla D, Burnett B, Polito F, Di Stefano V, Minutoli L, Atteritano M, Levy R, Frisina N, Mazzaferro S, Frisina A, D'Anna R, Cancellieri F, Cannata M, Corrado F, Lubrano C, Marini R, Adamo EB, Squadrito F (2010) Efficacy of genistein aglycone on some cardiovascular risk factors and homocysteine levels: a follow-up study. Nutr Metab Cardiovasc Dis 20(5):332–340

    Article  CAS  PubMed  Google Scholar 

  • Markovits J, Linassier C, Fossé P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, Le Pecq JB, Larsen AK. (1989) Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res 15;49(18):5111-7

  • Martin P, Horwitz K, Ryan D, McGuire W (1978) Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology 103(5):1860–1867

    Article  CAS  PubMed  Google Scholar 

  • Moskot M, Montefusco S, Jakóbkiewicz-Banecka J, Mozolewski P, Węgrzyn A, Di Bernardo D, Węgrzyn G, Medina DL, Ballabio A, Gabig-Cimińska M (2014) The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. J Biol Chem 289(24):17054–17069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskot M, Jakóbkiewicz-Banecka J, Kloska A, Smolińska E, Mozolewski P, Malinowska M, Rychłowski M, Banecki B, Węgrzyn G, Gabig-Cimińska M (2015) Modulation of expression of genes involved in glycosaminoglycan metabolism and lysosome biogenesis by flavonoids. Sci Rep 5:9378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petras M, Tatarkova Z, Kovalska M, Mokra D, Dobrota D, Lehotsky J, Drgova A (2014) Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J Physiol Pharmacol 65(1):15–23

    CAS  PubMed  Google Scholar 

  • Salti GI, Grewal S, Mehta RR, Das Gupta TK, Boddie AW Jr, Constantinou AI (2000) Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cells. Eur J Cancer 36(6):796–802

  • Sheppard C, Trimmer E, Matthews R (1999) Purification and properties of NADH-dependent 5,10-methylenetetrahydrofolate reductase (MetF) from Escherichia Coli. J Bacteriol 181(3):718–725

  • Shi Z, Guan Y, Huo YR, Liu S, Zhang M, Lu H, Yue W, Wang J, Ji Y (2015) Elevated Total homocysteine levels in acute ischemic stroke are associated with long-term mortality. Stroke 46:2419–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RK, Quigley F, Tosenovsky P, Velu R, Bradshaw B, Buettner P, Golledge J (2016) Serum homocysteine is associated with the severity of primary chronic venous disease. Phlebology 31(6):409–415

    Article  PubMed  Google Scholar 

  • Ulanowska K, Tkaczyk A, Konopa G, Wegrzyn G (2006) Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch Microbiol 184(5):271–278

    Article  CAS  PubMed  Google Scholar 

  • Ulanowska K, Majchrzyk A, Moskot M, Jakóbkiewicz-Banecka J, Węgrzyn G (2007) Assessment of antibacterial effects of flavonoids by estimation of generation times in liquid bacterial cultures. Biologia 62:132–135

    Article  CAS  Google Scholar 

  • Wang T, Sathyamoorthy N, Phang J (1996) Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis 17(2):271–275

    Article  PubMed  Google Scholar 

  • Wang C, Han L, Wu Q, Zhuo R, Liu K, Zhao J, Zhang L, Hao Y, Fan R, Liu Y, Li R, Chen Z, Zhang T, Chen S, Ma J, Liu S, Peng X, Duan S (2015) Association between homocysteine and incidence of ischemic stroke in subjects with essential hypertension: a matched case-control study. Clin Exp Hypertens 37(7):557-62

Download references

Acknowledgments

This work was supported by National Science Centre (Poland) project grant no. 2011/02/A/NZ1/00009 to G.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Banecki.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banecka-Majkutewicz, Z., Kadziński, L., Grabowski, M. et al. Evidence for interactions between homocysteine and genistein: insights into stroke risk and potential treatment. Metab Brain Dis 32, 1855–1860 (2017). https://doi.org/10.1007/s11011-017-0078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0078-1

Keywords

Navigation