Metabolic Brain Disease

, Volume 32, Issue 5, pp 1675–1684 | Cite as

Assessment of gender and age effects on serum and hair trace element levels in children with autism spectrum disorder

  • Anatoly V. Skalny
  • Natalia V. Simashkova
  • Anastasia A. Skalnaya
  • Tatiana P. Klyushnik
  • Geir Bjørklund
  • Margarita G. Skalnaya
  • Alexey A. TinkovEmail author
Original Article


The primary objective of the present study was to investigate the levels of essential trace elements in hair and serum in children with autism spectrum disorder (ASD) and investigate the age and gender effects. Children with ASD were characterized by significantly higher levels of copper (Cu) (+8%), iron (Fe) (+5%), and selenium (Se) (+13%) levels in hair and only 8% higher serum Cu levels. After stratification for gender, ASD boys were characterized by significantly increased hair Cu (+ 25%), Fe (+ 25%), and Se (+ 9%) levels, whereas in girls only Se content was elevated (+ 15%). Boys and girls suffering from ASD were characterized by significantly higher serum manganese (Mn) (+20%) and Cu (+18%) as compared to the control values, respectively. In the group of younger children (2–5 years), no significant group difference in hair trace element levels was detected, whereas serum Cu levels were significantly higher (+7%). In turn, the serum concentration of Se in ASD children was 11% lower than that in neurotypical children. In the group of older children with ASD (6–10 years), hair Fe and Se levels were 21% and 16% higher, whereas in serum only Cu levels were increased (+12%) as compared to the controls. Correlation analysis also revealed a different relationship between serum and hair trace element levels with respect to gender and age. Therefore, it is highly recommended to assess several bioindicative matrices for critical evaluation of trace element status in patients with ASD in order to develop adequate personalized nutritional correction.


Autism Selenium Trace elements Metals Copper 



This paper was financially supported by the Ministry of Education and Science of the Russian Federation on the program to improve the competitiveness of Peoples’ Friendship University (RUDN) University among the world’s leading research and education centers in 2016 – 2020.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5), Diagnostic Stat. Man. Ment. Disord. 4th Ed. TR. 280Google Scholar
  2. Adams J, Holloway C, George F, Quig D (2006) Analyses of toxic metals and essential minerals in the hair of Arizona children with autism and associated conditions, and their mothers. Biol Trace Elem Res 110:193–209CrossRefPubMedGoogle Scholar
  3. Adams JB et al (2011) Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond) 8:34. doi: 10.1186/1743-7075-8-34 CrossRefPubMedCentralGoogle Scholar
  4. Akyuzlu DK, Kayaalti Z, Soylemez E, Soylemezoglu T (2014) Association between autism and arsenic, lead, cadmium, manganese levels in hair and urine. J Pharm Pharmacol 2:140Google Scholar
  5. Al-Ayadhi LY (2005) Heavy metals and trace elements in hair samples of autistic children in central Saudi Arabia. Neurosciences (Riyadh) 10:213–218Google Scholar
  6. Al-Farsi YM et al (2013) Levels of heavy metals and essential minerals in hair samples of children with autism in Oman: a case-control study. Biol Trace Elem Res 151:181–186. doi: 10.1007/s12011-012-9553-z CrossRefPubMedGoogle Scholar
  7. Bencko V, Arbetová D, Skupeňová V, Pápayová A (1981) Biological monitoring of exposure to manganese by Mn hair content. In: Gut I, Cikrt M, Plaa GL (eds) Industrial and Environmental Xenobiotics. Springer Berlin, Heidelberg, pp 69–70Google Scholar
  8. Bertrand J, Mars A, Boyle C, Bove F, Yeargin-Allsopp M, Decoufle P (2001) Prevalence of autism in a United States population: the Brick Township, New Jersey, investigation. Pediatrics 108:1155–1161CrossRefPubMedGoogle Scholar
  9. Bjørklund G (2013) The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp 73:225–236Google Scholar
  10. Bjørklund G, Aaseth J, Ajsuvakova OP, Nikonorov AA, Skalny AV, Skalnaya MG, Tinkov AA (2017) Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem Rev 332:30–37CrossRefGoogle Scholar
  11. Bjørklund G, Chartrand M (2016) Nutritional and environmental influences on autism spectrum disorder. J Nutr Disorders The 6:e123Google Scholar
  12. Bjørklund G, Saad K, Chirumbolo S, Kern JK, Geier DA, Geier MR, Urbina MA (2016) Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol Exp 76:257–268Google Scholar
  13. Blaurock-Busch E, Amin OR, Rabah T (2011) Heavy metals and trace elements in hair and urine of a sample of arab children with autistic spectrum disorder. Maedica (Buchar) 6:247–257Google Scholar
  14. Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D (2007) Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect 115:122–127CrossRefPubMedGoogle Scholar
  15. Caroli S, Senofonte O, Violante N, Fornarelli L, Powar A (1992) Assessment of reference values for elements in hair of urban normal subjects. Microchem J 46:174–183CrossRefGoogle Scholar
  16. Carter CS (2007) Sex differences in oxytocin and vasopressin: implications for autism spectrum disorders? Behav Brain Res 176:170–186. doi: 10.1016/j.bbr.2006.08.025 CrossRefPubMedGoogle Scholar
  17. Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181. doi: 10.1016/j.pathophys.2006.05.007 CrossRefPubMedGoogle Scholar
  18. Chojnacka K, Zielinska A, Gorecka H, Dobrzanski Z, Gorecki H (2010) Reference values for hair minerals of Polish students. Environ Toxicol Pharmacol 29:314–319. doi: 10.1016/j.etap.2010.03.010 CrossRefPubMedGoogle Scholar
  19. Crăciun EC, Bjørklund G, Tinkov AA, Urbina MA, Skalny AV, Rad F, Dronca E (2016) Evaluation of whole blood zinc and copper levels in children with autism spectrum disorder. Metab Brain Dis 31:887–890CrossRefPubMedGoogle Scholar
  20. De Palma G, Catalani S, Franco A, Brighenti M, Apostoli P (2012) Lack of correlation between metallic elements analyzed in hair by ICP-MS and autism. J Autism Dev Disord 42:342–353CrossRefPubMedGoogle Scholar
  21. Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J (2015) The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J Trace Elem Med Biol 31:193–203CrossRefPubMedGoogle Scholar
  22. El-Ansary A, Bjørklund G, Tinkov AA, Skalny AV, Al Dera H (2017) Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab Brain Dis. doi: 10.1007/s11011-017-9996-1
  23. Esteban M, Castano A (2009) Non-invasive matrices in human biomonitoring: a review. Environ Int 35:438–449. doi: 10.1016/j.envint.2008.09.003 CrossRefPubMedGoogle Scholar
  24. Faber S, Zinn GM, Kern Ii JC, Skip Kingston H (2009) The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers 14:171–180CrossRefPubMedGoogle Scholar
  25. Fido A, Al-Saad S (2005) Toxic trace elements in the hair of children with autism. Autism 9:290–298. doi: 10.1177/1362361305053255 CrossRefPubMedGoogle Scholar
  26. Frye RE, James SJ (2014) Metabolic pathology of autism in relation to redox metabolism. Biomark Med 8:321–330. doi: 10.2217/bmm.13.158 CrossRefPubMedGoogle Scholar
  27. Ghanizadeh A (2012) Malondialdehyde, Bcl-2, superoxide dismutase and glutathione peroxidase may mediate the association of sonic hedgehog protein and oxidative stress in autism. Neurochem Res 37:899–901CrossRefPubMedGoogle Scholar
  28. Gorini F, Muratori F, Morales MA (2014) The role of heavy metal pollution in neurobehavioral disorders: a focus on autism. Rev J Autism Dev Disord 1:354–372CrossRefGoogle Scholar
  29. Grabrucker AM (2012) Environmental factors in autism. Front Psychol 3:118. doi: 10.3389/fpsyt.2012.00118 Google Scholar
  30. Henn BC et al (2010) Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiology:21–433Google Scholar
  31. Hergüner S, Keleşoğlu FM, Tanıdır C, Çöpür M (2012) Ferritin and iron levels in children with autistic disorder. Eur J Pediatr 171:143–146CrossRefPubMedGoogle Scholar
  32. Hoet P, Roels HA (2014) Significance and Usefulness of Biomarkers of Exposure to Manganese. In: Manganese in Health and Disease. Royal Society of Chemistry, pp 355-401Google Scholar
  33. Hyman SL et al (2012) Nutrient intake from food in children with autism. Pediatrics 130(Suppl 2):S145–S153. doi: 10.1542/peds.2012-0900L CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jory J, McGinnis WR (2008) Red-cell trace minerals in children with autism. Am J Biochem Biotechnol 4:101–104CrossRefGoogle Scholar
  35. Karki P, Lee E, Aschner M (2013) Manganese neurotoxicity: a focus on glutamate transporters. Ann Occup Environ Med 25:4. doi: 10.1186/2052-4374-25-4 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kern JK et al (2015) Systematic assessment of research on autism spectrum disorder and mercury reveals conflicts of interest and the need for transparency in autism research. Sci Eng Ethics:1–30. doi: 10.1007/s11948-015-9713-6
  37. Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR (2016) The relationship between mercury and autism: a comprehensive review and discussion. J Trace Elem Med Biol 37:8–24CrossRefPubMedGoogle Scholar
  38. Khaled EM et al (2016) Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in Egyptian children with autism spectrum disorder. Metab Brain Dis 31:1419–1426CrossRefPubMedGoogle Scholar
  39. Khan K et al (2012) Manganese exposure from drinking water and children’s academic achievement. Neurotoxicology 33:91–97. doi: 10.1016/j.neuro.2011.12.002 CrossRefPubMedGoogle Scholar
  40. Kosanovic M, Jokanovic M (2011) Quantitative analysis of toxic and essential elements in human hair. Clinical validity of results. Environ Monit Assess 174:635–643. doi: 10.1007/s10661-010-1484-6 CrossRefPubMedGoogle Scholar
  41. Lai MC et al (2013) Biological sex affects the neurobiology of autism. Brain 136:2799–2815. doi: 10.1093/brain/awt216 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lan AP, Chen J, Chai ZF, Hu Y (2016) The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 29:665–678CrossRefPubMedGoogle Scholar
  43. Li SO, Wang JL, Bjorklund G, Zhao WN, Yin CH (2014) Serum copper and zinc levels in individuals with autism spectrum disorders. Neuroreport 25:1216–1220. doi: 10.1097/WNR.0000000000000251 CrossRefPubMedGoogle Scholar
  44. Lubkowska A, Sobieraj W (2009) Concentrations of magnesium, calcium, iron, selenium, zinc and copper in the hair of autistic children. Trace Elem Electroly 26(2):72–77Google Scholar
  45. Macedoni-Lukšič M et al (2015) Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders. Biol Trace Elem Res 163:2–10CrossRefPubMedGoogle Scholar
  46. Magos L, Clarkson TW (2008) The assessment of the contribution of hair to methyl mercury excretion. Toxicol Lett 182:48–49. doi: 10.1016/j.toxlet.2008.08.010 CrossRefPubMedGoogle Scholar
  47. Marger L, Schubert CR, Bertrand D (2014) Zinc: an underappreciated modulatory factor of brain function. Biochem Pharmacol 91:426–435. doi: 10.1016/j.bcp.2014.08.002 CrossRefPubMedGoogle Scholar
  48. Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE (2013) Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 62:65–75. doi: 10.1016/j.freeradbiomed.2013.01.032 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Matelski L, Van de Water J (2016) Risk factors in autism: thinking outside the brain. J Autoimmun 67:1–7. doi: 10.1016/j.jaut.2015.11.003 CrossRefPubMedGoogle Scholar
  50. McGinnis WR (2004) Oxidative stress in autism. Altern Ther Health Med 10:22–36 quiz 37, 92PubMedGoogle Scholar
  51. Meguid NA, Anwar M, Bjorklund G, Hashish A, Chirumbolo S, Hemimi M, Sultan E (2017) Dietary adequacy of Egyptian children with autism spectrum disorder compared to healthy developing children. Metab Brain Dis 32:607–615. doi: 10.1007/s11011-016-9948-1 CrossRefPubMedGoogle Scholar
  52. Ming X, Johnson WG, Stenroos ES, Mars A, Lambert GH, Buyske S (2010) Genetic variant of glutathione peroxidase 1 in autism. Brain and Development 32:105–109. doi: 10.1016/j.braindev.2008.12.017 CrossRefPubMedGoogle Scholar
  53. Mostafa GA, Bjørklund G, Urbina MA, Al-Ayadhi LY (2016) The positive association between elevated blood lead levels and brain-specific autoantibodies in autistic children from low lead-polluted areas. Metab Brain Dis 31:1047–1054CrossRefPubMedGoogle Scholar
  54. Padhye U (2003) Excess dietary iron is the root cause for increase in childhood autism and allergies. Med Hypotheses 61:220–222CrossRefPubMedGoogle Scholar
  55. Priya MDL, Geetha A (2011) Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol Trace Elem Res 142:148–158CrossRefGoogle Scholar
  56. Pyrzyńska K (2002) Determination of selenium species in environmental samples. Microchim Acta 140:55–62CrossRefGoogle Scholar
  57. Racette BA, Aschner M, Guilarte TR, Dydak U, Criswell SR, Zheng W (2012) Pathophysiology of manganese-associated neurotoxicity. Neurotoxicology 33:881–886. doi: 10.1016/j.neuro.2011.12.010 CrossRefPubMedGoogle Scholar
  58. Rahbar MH et al (2014) Blood manganese concentrations in Jamaican children with and without autism spectrum disorders. Environ Health 13:69CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rahbar MH et al (2015) Synergic effect of GSTP1 and blood manganese concentrations in Autism Spectrum Disorder. Res Autism Spectr Disord 18:73–82. doi: 10.1016/j.rasd.2015.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rehmani N, Zafar A, Arif H, Hadi SM, Wani AA (2017) Copper-mediated DNA damage by the neurotransmitter dopamine and L-DOPA: a pro-oxidant mechanism. Toxicol in Vitro 40:336–346CrossRefPubMedGoogle Scholar
  61. Reynolds A et al (2012) Iron status in children with autism spectrum disorder. Pediatrics 130(Suppl 2):S154–S159. doi: 10.1542/peds.2012-0900M CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rivet TT, Matson JL (2011) Review of gender differences in core symptomatology in autism spectrum disorders. Res Autism Spect Dis 5:957–976CrossRefGoogle Scholar
  63. Sahin C et al (2015) Measurement of hair iron concentration as a marker of body iron content. Biomed Rep 3:383–387PubMedPubMedCentralGoogle Scholar
  64. Schaafsma SM, Pfaff DW (2014) Etiologies underlying sex differences in Autism Spectrum Disorders. Front Neuroendocrinol 35:255–271. doi: 10.1016/j.yfrne.2014.03.006 CrossRefPubMedGoogle Scholar
  65. Schlegel-Zawadzka M (1992) Chromium content in the hair of children and students in southern Poland. Biol Trace Elem Res 32:79–84CrossRefPubMedGoogle Scholar
  66. Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57CrossRefPubMedGoogle Scholar
  67. Sezgin C, Kaya S, Keskin S (2010) Comparison of blood toxic and plasma essential elements of the autistic Turkish infants. FEBS J 277:88Google Scholar
  68. Shaw CA, Tomljenovic L (2013) Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res 56:304–316. doi: 10.1007/s12026-013-8403-1 CrossRefPubMedGoogle Scholar
  69. Skalny AV et al (2017) Hair toxic and essential trace elements in children with autism spectrum disorder. Metab Brain Dis 32:195–202. doi: 10.1007/s11011-016-9899-6 CrossRefPubMedGoogle Scholar
  70. Skalny AV et al (2016) Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. J Trace Elem Med Biol. doi: 10.1016/j.jtemb.2016.09.009
  71. Söğüt S et al (2003) Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clin Chim Acta 331:111–117CrossRefPubMedGoogle Scholar
  72. Sturaro A, Parvoli G, Doretti L, Allegri G, Costa C (1994) The influence of color, age, and sex on the content of zinc, copper, nickel, manganese, and lead in human hair. Biol Trace Elem Res 40:1–8CrossRefPubMedGoogle Scholar
  73. Szynkowska M, Pawlaczyk A, Wojciechowska E, Sypniewski S, Paryjczak T (2009) Human hair as a biomarker in assessing exposure to toxic metals. Pol J Environ Stud 18:1151–1161Google Scholar
  74. Tabatadze T, Zhorzholiani L, Kherkheulidze M, Kandelaki E, Ivanashvili T (2015) Hair heavy metal and essential trace element concentration in children with autism spectrum disorder. Georgian Med News:77–82Google Scholar
  75. Tordjman S et al (2014) Gene x Environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psych 5:53. doi: 10.3389/fpsyt.2014.00053 Google Scholar
  76. van De Sande MM, van Buul VJ, Brouns FJ (2014) Autism and nutrition: the role of the gut-brain axis. Nutr Res Rev 27:199–214. doi: 10.1017/S0954422414000110 CrossRefGoogle Scholar
  77. Vogelaar A (2000) Studying the effects of essential nutrients and environmental factors on autistic behavior. DAN!(Defeat Autism Now!) Think Tank. Autism Research Institute, San DiegoGoogle Scholar
  78. Wright RO, Amarasiriwardena C, Woolf AD, Jim R, Bellinger DC (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27:210–216. doi: 10.1016/j.neuro.2005.10.001 CrossRefPubMedGoogle Scholar
  79. Yassa HA (2014) Autism: a form of lead and mercury toxicity. Environ Toxicol Pharmacol 38:1016–1024. doi: 10.1016/j.etap.2014.10.005 CrossRefPubMedGoogle Scholar
  80. Yasuda H, Yonashiro T, Yoshida K, Ishii T, Tsutsui T (2005) Mineral imbalance in children with autistic disorders. Biomed Res Trace Elem 16:285–292Google Scholar
  81. Yasuda H, Yoshida K, Yasuda Y, Tsutsui T (2011) Infantile zinc deficiency: association with autism spectrum disorders. Sci Rep 1:129. doi: 10.1038/srep00129 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yorbik O, Kurt I, Hasimi A, Ozturk O (2010) Chromium, cadmium, and lead levels in urine of children with autism and typically developing controls. Biol Trace Elem Res 135:10–15. doi: 10.1007/s12011-009-8494-7 CrossRefPubMedGoogle Scholar
  83. Yorbik O, Sayal A, Akay C, Akbiyik DI, Sohmen T (2002) Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot Essent Fatty Acids 67:341–343CrossRefPubMedGoogle Scholar
  84. Yorbık Ö, Sayal A, Akay C, Söhmen T (2000) Investigation of Antioxidant Enzymes and Related Trace Elements in the Children with Autistic Disorder. Turk J Child Adolesc Ment Health 7:173–181Google Scholar
  85. Zablotsky B, Black LI, Maenner MJ, Schieve LA, Blumberg SJ (2015) Estimated Prevalence of Autism and Other Developmental Disabilities Following Questionnaire Changes in the 2014 National Health Interview Survey. Natl Health Stat Report 87:1–20Google Scholar
  86. Zeng H, Uthus EO, Combs GF (2005) Mechanistic aspects of the interaction between selenium and arsenic. J Inorg Biochem 99:1269–1274CrossRefPubMedGoogle Scholar
  87. Zheng W, Fu SX, Dydak U, Cowan DM (2011) Biomarkers of manganese intoxication. Neurotoxicology 32:1–8. doi: 10.1016/j.neuro.2010.10.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Anatoly V. Skalny
    • 1
    • 2
    • 3
    • 4
  • Natalia V. Simashkova
    • 5
  • Anastasia A. Skalnaya
    • 6
  • Tatiana P. Klyushnik
    • 5
  • Geir Bjørklund
    • 7
  • Margarita G. Skalnaya
    • 1
  • Alexey A. Tinkov
    • 1
    • 3
    • 8
    Email author
  1. 1.RUDN UniversityMoscowRussia
  2. 2.Orenburg State UniversityOrenburgRussia
  3. 3.Yaroslavl State UniversityYaroslavlRussia
  4. 4.Trace Element Institute for UNESCOLyonFrance
  5. 5.Scientific Center for Mental HealthRussian Academy of Medical SciencesMoscowRussia
  6. 6.Lomonosov Moscow State UniversityMoscowRussia
  7. 7.Council for Nutritional and Environmental MedicineMo i RanaNorway
  8. 8.Orenburg State Medical UniversityOrenburgRussia

Personalised recommendations