Metabolic Brain Disease

, Volume 32, Issue 5, pp 1693–1703 | Cite as

Acute administration of methionine and/or methionine sulfoxide impairs redox status and induces apoptosis in rat cerebral cortex

  • Mayara Sandrielly Pereira Soares
  • Cassiana Macagnan Viau
  • Jenifer Saffi
  • Marcelo Zanusso Costa
  • Tatiane Morgana da Silva
  • Pathise Souto Oliveira
  • Juliana Hofstatter Azambuja
  • Alethéa Gatto Barschak
  • Elizandra Braganhol
  • Angela T S Wyse
  • Roselia Maria SpanevelloEmail author
  • Francieli Moro StefanelloEmail author
Original Article


High plasma levels of methionine (Met) and its metabolites such as methionine sulfoxide (MetO) may occur in several genetic abnormalities. Patients with hypermethioninemia can present neurological dysfunction; however, the neurotoxicity mechanisms induced by these amino acids remain unknown. The aim of the present work was to study the effects of Met and/or MetO on oxidative stress, genotoxicity, cytotoxicity and to evaluate whether the cell death mechanism is mediated by apoptosis in the cerebral cortex of young rats. Forty-eight Wistar rats were divided into groups: saline, Met 0.4 g/Kg, MetO 0.1 g/Kg and Met 0.4 g/Kg + MetO 0.1 g/Kg, and were euthanized 1 and 3 h after subcutaneous injection. Results showed that TBARS levels were enhanced by MetO and Met+MetO 1 h and 3 h after treatment. ROS was increased at 3 h by Met, MetO and Met+MetO. SOD activity was increased in the Met group, while CAT was reduced in all experimental groups 1 h and 3 h after treatment. GPx activity was enhanced 1 h after treatment by Met, MetO and Met+MetO, however it was reduced in the same experimental groups 3 h after administration of amino acids. Caspase-3, caspase-9 and DNA damage was increased and cell viability was reduced by Met, MetO and Met+MetO at 3 h. Also, Met, MetO and Met+MetO, after 3 h, enhanced early and late apoptosis cells. Mitochondrial electrochemical potential was decreased by MetO and Met+MetO 1 h and 3 h after treatment. These findings help understand the mechanisms involved in neurotoxicity induced by hypermethioninemia.


methionine methionine sulfoxide oxidative stress apoptosis caspases DNA damage 



The authors thank Hedy L. Hofmann for the English revision.

Compliance with ethical standards


This research was supported by grants from the Brazilian Agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/INCT/INPeTAm, Grant no. 573695/2008-3), Programa Nacional de Cooperação Acadêmica/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS - PRONEX/FAPERGS/CNPq, Grant no. 10/0044-3).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal procedures were approved by the Committee of Ethics and Animal Experimentation of the Federal University of Pelotas, Brazil under protocol number: CEEA 3527.


  1. Ables GP, Hens JR (2016) Nichenametla SN (2016) Methionine restriction beyond life-span extension. Ann N Y Acad Sci 1363:68–79. doi: 10.1111/nyas.13014 CrossRefPubMedGoogle Scholar
  2. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi: 10.1016/S0076-6879(84)05016-3 CrossRefPubMedGoogle Scholar
  3. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145. doi: 10.1016/S0304-3940(01)01636-6 CrossRefPubMedGoogle Scholar
  4. Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130:1910–1917PubMedGoogle Scholar
  5. Baydas G, Reiter RJ, Akbulut M, Tuzcu M, Tamer S (2005) Melatonin inhibits neural apoptosis induced by homocysteine in hippocampus of rats via inhibition of cytochrome c translocation and caspase-3 activation and by regulating pro- and anti-apoptotic protein levels. Neuroscience 135:879–886. doi: 10.1016/j.neuroscience.2005.05.048 CrossRefPubMedGoogle Scholar
  6. Burlinson B, Tice RR, Speit G, Agurell E, Brendler-Schwaab SY, Collins AR, Escobar P, Honma M, Kumaravel TS, Nakajima M, Sasaki YF, Thybaud V, Uno Y, Vasquez M, Hartmann A (2007) Fourth International Workgroup on Genotoxicity testing: results of the in vivo Comet assay workgroup. Mutat Res 627:31–35. doi: 10.1016/j.mrgentox.2006.08.011 CrossRefPubMedGoogle Scholar
  7. Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4:155–181. doi: 10.1146/annurev.cb.04.110188.001103 CrossRefPubMedGoogle Scholar
  8. Collins AR, Ma AG, Duthie SJ (1995) The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mut Res 336:69–77. doi: 10.1016/0921-8777(94)00043-6 CrossRefGoogle Scholar
  9. Costa MZ, Silva TM, Flores NP, Schmitz F, Scherer EBS, Viau CM, Saffi J, Barschak AG, Wyse AT, Spanevello RM, Stefanello FM (2013) Methionine and methionine sulfoxide alter parameters of oxidative stress in the liver of young rats: in vitro and in vivo studies. Mol Cell biochem 384:21–28. doi: 10.1007/s11010-013-1777-5 CrossRefPubMedGoogle Scholar
  10. D’Amelio M, Cavallucci V, Cecconi F (2010) Neuronal caspase-3 signaling: not only cell death. Cell Death Differ 17:1104–1114. doi: 10.1038/cdd.2009.180 CrossRefPubMedGoogle Scholar
  11. Da Silveira KC, Viau CM, Colares JR, Saffi J, Marroni NP, Porawski M (2015) Cirrhosis induces apoptosis in renal tissue through intracellular oxidative stress. Arq Gastroenterol 52:65–71. doi: 10.1590/S0004-28032015000100014 CrossRefPubMedGoogle Scholar
  12. Dever JT, Elfarra AA (2008) l-Methionine-dl-sulfoxide metabolism and toxicity in freshly isolated mouse hepatocytes, Gender differences and inhibition with aminooxyacetic acid. Drug Metab Dispos 36:2252–2260. doi: 10.1124/dmd.108.023390 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dos Santos LM, da Silva TM, Azambuja JH, Ramos PT, Oliveira PS, da Silveira EF, Pedra NS, Galdino K, do Couto CA, Soares MS, Tavares RG, Spanevello RM, Stefanello FM, Braganhol E (2017) Methionine and methionine sulfoxide treatment induces M1/classical macrophage polarization and modulates oxidative stress and purinergic signaling parameters. Mol Cell Biochem. doi: 10.1007/s11010-016-2843-6
  14. Emadi A, Ross AE, Cowan KM, Fortenberry YM, Vuica-Ross M (2010) A chemical genetic screen for modulators of asymmetrical 2,2'-dimeric naphthoquinones cytotoxicity in yeast. PLoS One 5:e10846. doi: 10.1371/journal.pone.0010846 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. doi: 10.1016/0076- 6879(90)86134-H CrossRefPubMedGoogle Scholar
  16. Gahl WA, Bernardini I, Finkelstein JD, Tangerman A, Martin JJ, Blom HJ, Mullen KD, Mudd SH (1988) Transsulfuration in an adult with hepatic methionine adenosyltransferase deficiency. J Clin Invest 81:390–397. doi: 10.1172/JCI113331 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ghorbani Z, Hajizadeh M, Hekmatdoost A (2016) Dietary supplementation in patients with alcoholic liver disease: a review on current evidence. Hepatobiliary Pancreat Dis Int 13:1–3. doi: 10.1016/S1499-3872(16)60096-6 Google Scholar
  18. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, 4th ed., New YorkGoogle Scholar
  19. Halliwell B (2011) Free radicals and antioxidants – quo vadis? Trends Pharmacol Sci 32:125–130. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. doi: 10.1074/jbc.270.46.27489 PubMedGoogle Scholar
  21. Mazarakis ND, Edwards AD, Mehmet H (1997) Apoptosis in neural development and disease. Arch Dis Child 77:F165–F170. doi: 10.1146/annurev.neuro.23.1.73 CrossRefGoogle Scholar
  22. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  23. Moskovitz J (2014) Detection and localization of methionine sulfoxide residues of specific proteins in brain tissue. Protein Pept Lett 21:52–55. doi: 10.2174/09298665113209990068 CrossRefPubMedGoogle Scholar
  24. Mudd SH (2011) Hypermethioninemias of Genetic and Non-Genetic Origin: A Review. Am J Med Genet Part C (Seminars in Medical Genetics) 157:3–32. doi: 10.1002/ajmg.c.30293 CrossRefGoogle Scholar
  25. Mudd SH, Jenden DJ, Capdevila A, Roch M, Levy HL, Wagner C (2000) Isolated hypermethioninemia: measurements of S-adenosylmethionine and choline. Metabolism 49:1542–1547. doi: 10.1053/meta.2000.18521 CrossRefPubMedGoogle Scholar
  26. Mudd SH, Levy HL, Skovby F (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, vol 2. McGraw-Hill, New York, pp 1279–1327Google Scholar
  27. Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 2001(49):1183–1186. doi: 10.1177/002215540104900912 CrossRefGoogle Scholar
  28. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012 CrossRefPubMedGoogle Scholar
  29. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363. doi: 10.1016/S0076-6879(94)33041-7 CrossRefPubMedGoogle Scholar
  30. Sanchez-Roman I, Barja G (2013) Regulation of longevity and oxidative stress by nutritional interventions: Role of methionine restriction. Exp Gerontol 48:1030–1042. doi: 10.1016/j.exger.2013.02.021 CrossRefPubMedGoogle Scholar
  31. Schweinberger BM, Turcatel E, Rodrigues AF, Wyse ATS (2015) Gestational hypermethioninaemia alters oxidative/nitrative status in skeletal muscle and biomarkers of muscular injury and inflammation in serum of rat offspring. Int J Exp Pathol 96:277–284. doi: 10.1111/iep.12136 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. doi: 10.1016/0014-4827(88)90265-0 CrossRefPubMedGoogle Scholar
  33. Soares MS, Oliveira PS, Debom GN, da Silveira MB, Polachini CR, Baldissarelli J, Morsch VM, Schetinger MR, Tavares RG, Stefanello FM, Spanevello RM (2017) Chronic administration of methionine and/or methionine sulfoxide alters oxidative stress parameters and ALA-D activity in liver and kidney of young rats. Amino Acids. doi: 10.1007/s00726-016-2340-y
  34. Stefanello FM, Chiarani F, Kurek AG, Wannmacher CMD, Wajner M, Wyse AT (2005) Methionine alters Na+,K+-ATPase activity, lipid peroxidation and nonenzymatic antioxidant defenses in rat hippocampus. Int J Dev Neurosci 23:651–656. doi: 10.1016/j.ijdevneu.2005.06.003 CrossRefPubMedGoogle Scholar
  35. Stefanello FM, Ferreira AG, Pereira TC, da Cunha MJ, Bonan CD, Bogo MR, Wyse AT (2011) Acute and chronic hypermethioninemia alter NA+,K+-ATPase activity in rat hippocampus: prevention by antioxidants. Int J Dev Neurosci 29:483–488. doi: 10.1016/j.ijdevneu.2011.02.001 CrossRefPubMedGoogle Scholar
  36. Stefanello FM, Matté C, Pederzolli CD, Kolling J, Mescka CP, Lamers ML, Assis AM, Perry ML, Santos MF, Dutra-Filho CS, Wyse ATS (2009) Hypermethioninemia provokes oxidative damage and histological changes in liver of rats. Biochimie 91:961–968. doi: 10.1016/j.biochi.2009.04.018 CrossRefPubMedGoogle Scholar
  37. Stefanello FM, Matté C, Scherer EB, Wannmacher CMD, Wajner M, Wyse ATS (2007b) Chemically induced model of hypermethioninemia in rats. J Neurosci Methods 160:1–4. doi: 10.1016/j.jneumeth.2006.07.029 CrossRefPubMedGoogle Scholar
  38. Stefanello FM, Kreutz F, Scherer EB, Breier AC, Vianna LP, Trindade VM, Wyse AT (2007a) Reduction of gangliosides, phospholipids and cholesterol content in cerebral cortex of rats caused by chronic hypermethioninemia. Int J Dev Neurosci 25:473–477. doi: 10.1016/j.ijdevneu.2007.08.004 CrossRefPubMedGoogle Scholar
  39. Stiuso P, Bagarolo ML, Ilisso CP, Vanacore D, Martino E, Caraglia M, Porcelli M, Cacciapuoti G (2016) Protective effect of tyrosol and S-adenosylmethionine against ethanol-induced oxidative stress of Hepg2 cells involves sirtuin 1, P53 and Erk1/2 signaling. Int J Mol Sci 17:622. doi: 10.3390/ijms17050622 CrossRefPubMedCentralGoogle Scholar
  40. Streck EL, Delwing D, Tagliari B, Matté C, Wannmacher CMD, Wajner M, Wyse AT (2003) Brain energy metabolism is compromised by the metabolites accumulating in homocystinuria. Neurochem Int 43:597–602. doi: 10.1016/S0197-0186(02)00230-9 CrossRefPubMedGoogle Scholar
  41. Streck EL, Zugno AI, Tagliari B, Wannmacher CMD, Wajner M, Wyse AT (2002) Inhibition of Na+,K+-ATPase activity by the metabolites accumulating in homocystinuria. Metab Brain Dis 17:83–91. doi: 10.1023/A:1015594111778 CrossRefPubMedGoogle Scholar
  42. Viau CM, Moura DJ, Facundo VA, Saffi J (2014) The natural triterpene 3β,6β,16β-trihydroxy-lup-20(29)-ene obtained from the flowers of Combretum leprosum induces apoptosis in MCF-7 breast cancer cells. BMC Complement Altern Med 14:280. doi: 10.1186/1472-6882-14-280 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Viggiano A, Viggiano E, Monda M, Ingrosso D, Perna AF, De Luca B (2012) Methionine-enriched diet decreases hippocampal anti-oxidant defenses and impairs spontaneous behavior and long-term potenttiation in rats. Brain Res 1471:66–74. doi: 10.1016/j.brainres.2012.06.048 CrossRefPubMedGoogle Scholar
  44. Wurstle ML, Laussmann MA, Rehm M (2012) The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activationand activity on the apoptosome. Exp Cell Res 318:1213–1220. doi: 10.1016/j.yexcr.2012.02.013 CrossRefPubMedGoogle Scholar
  45. Yoon SY, Hong GH, Kwon HS, Park S, Park SY, Shin B, Kim TB, Moon HB, Cho YS (2016) S-Adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress. Exp Mol Med 48:236. doi: 10.1038/emm.2016.35 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mayara Sandrielly Pereira Soares
    • 1
  • Cassiana Macagnan Viau
    • 2
  • Jenifer Saffi
    • 2
  • Marcelo Zanusso Costa
    • 3
  • Tatiane Morgana da Silva
    • 3
  • Pathise Souto Oliveira
    • 3
  • Juliana Hofstatter Azambuja
    • 4
  • Alethéa Gatto Barschak
    • 4
  • Elizandra Braganhol
    • 4
  • Angela T S Wyse
    • 5
  • Roselia Maria Spanevello
    • 1
    Email author
  • Francieli Moro Stefanello
    • 3
    Email author
  1. 1.Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de PelotasPelotasBrazil
  2. 2.Laboratório de Genética ToxicológicaUniversidade Federal de Ciências da Saúde de Porto AlegrePorto AlegreBrazil
  3. 3.Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de PelotasPelotasBrazil
  4. 4.Departamento de Ciências Básicas da SaúdeUniversidade Federal de Ciências da Saúde de Porto AlegrePorto AlegreBrazil
  5. 5.Laboratório de Neuroproteção e Doença Metabólica, Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations