Advertisement

Metabolic Brain Disease

, Volume 32, Issue 2, pp 513–518 | Cite as

The bile duct ligated rat: A relevant model to study muscle mass loss in cirrhosis

  • Cristina R. Bosoi
  • Mariana M. Oliveira
  • Rafael Ochoa-Sanchez
  • Mélanie Tremblay
  • Gabriella A. Ten Have
  • Nicolaas E. Deutz
  • Christopher F. Rose
  • Chantal BemeurEmail author
Original Article

Abstract

Muscle mass loss and hepatic encephalopathy (complex neuropsychiatric disorder) are serious complications of chronic liver disease (cirrhosis) which impact negatively on clinical outcome and quality of life and increase mortality. Liver disease leads to hyperammonemia and ammonia toxicity is believed to play a major role in the pathogenesis of hepatic encephalopathy. However, the effects of ammonia are not brain-specific and therefore may also affect other organs and tissues including muscle. The precise pathophysiological mechanisms underlying muscle wasting in chronic liver disease remains to be elucidated. In the present study, we characterized body composition as well as muscle protein synthesis in cirrhotic rats with hepatic encephalopathy using the 6-week bile duct ligation (BDL) model which recapitulates the main features of cirrhosis. Compared to sham-operated control animals, BDL rats display significant decreased gain in body weight, altered body composition, decreased gastrocnemius muscle mass and circumference as well as altered muscle morphology. Muscle protein synthesis was also significantly reduced in BDL rats compared to control animals. These findings demonstrate that the 6-week BDL experimental rat is a relevant model to study liver disease-induced muscle mass loss.

Keywords

Experimental cirrhosis Muscle mass loss Protein synthesis Ammonia Hepatic encephalopathy 

Notes

Acknowledgements

We thank the Metabolic Phenotyping core facility of CRCHUM for EchoMRI.

References

  1. Bajaj JS, Saeian K, Christensen KM et al (2008) Probiotic yogurt for the treatment of minimal hepatic encephalopathy. Am J Gastroenterol 103:1707–1715. doi: 10.1111/j.1572-0241.2008.01861.x CrossRefPubMedGoogle Scholar
  2. Bémeur C, Desjardins P, Butterworth RF (2010) Role of nutrition in the management of hepatic encephalopathy in end-stage liver failure. J Nutr Metab 2010:489823. doi: 10.1155/2010/489823 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bosoi CR, Rose CF (2009) Identifying the direct effects of ammonia on the brain. Metab Brain Dis 24:95–102. doi: 10.1007/s11011-008-9112-7 CrossRefPubMedGoogle Scholar
  4. Bosoi CR, Parent-Robitaille C, Anderson K et al (2011) AST-120 (spherical carbon adsorbent) lowers ammonia levels and attenuates brain edema in bile-duct ligated rats. Hepatology 53:1995–2002. doi: 10.1002/hep.24273 CrossRefPubMedGoogle Scholar
  5. Bosoi CR, Yang X, Huynh J et al (2012) Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure. Free Radic Biol Med 52:1228–1235. doi: 10.1016/j.freeradbiomed.2012.01.006 CrossRefPubMedGoogle Scholar
  6. Bosoi CR, Zwingmann C, Marin H et al (2014) Increased brain lactate is central to the development of brain edema in rats with chronic liver disease. J Hepatol 60:554–560. doi: 10.1016/j.jhep.2013.10.011 CrossRefPubMedGoogle Scholar
  7. Butterworth RF, Norenberg MD, Felipo V, et al (2009) Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int 29:783–788. doi:  10.1111/j.1478-3231.2009.02034
  8. Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227CrossRefPubMedGoogle Scholar
  9. Cash WJ, McConville P, McDermott E et al (2010) Current concepts in the assessment and treatment of hepatic encephalopathy. QJM 103:9–16. doi: 10.1093/qjmed/hcp152 CrossRefPubMedGoogle Scholar
  10. Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519PubMedGoogle Scholar
  11. Cosquéric G, Sebag A, Ducolombier C et al (2006) Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr 96:895–901CrossRefPubMedGoogle Scholar
  12. Dasarathy S, Mullen KD, Conjeevaram HS et al (2002) Preservation of portal pressure improves growth and metabolic profile in the male portacaval-shunted rat. Dig Dis Sci 47:1936–1942CrossRefPubMedGoogle Scholar
  13. Dasarathy S, McCullough AJ, Muc S et al (2011) Sarcopenia associated with portosystemic shunting is reversed by follistatin. J Hepatol 54:915–921. doi: 10.1016/j.jhep.2010.08.032 CrossRefPubMedGoogle Scholar
  14. Davuluri G, Krokowski D, Guan B-J et al (2016) Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of L-leucine in cirrhosis. J Hepatol. doi: 10.1016/j.jhep.2016.06.004 PubMedGoogle Scholar
  15. Engelen MPKJ, Com G, Wolfe RR, Deutz NEP (2013) Dietary essential amino acids are highly anabolic in pediatric patients with cystic fibrosis. J Cyst Fibros 12:445–453. doi: 10.1016/j.jcf.2012.12.011 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279. doi: 10.1016/S0301-0082(02)00019-9 CrossRefPubMedGoogle Scholar
  17. Görg B, Qvartskhava N, Bidmon H-J et al (2010) Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. Hepatology 52:256–265. doi: 10.1002/hep.23656 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jia B, Yu Z-J, Duan Z-F et al (2014) Hyperammonaemia induces hepatic injury with alteration of gene expression profiles. Liver Int 34:748–758. doi: 10.1111/liv.12365 CrossRefPubMedGoogle Scholar
  19. Kubota Y, Kato K, Dairaku N et al (2004) Contribution of glutamine synthetase to ammonia-induced apoptosis in gastric mucosal cells. Digestion 69:140–148. doi: 10.1159/000078152 CrossRefPubMedGoogle Scholar
  20. Lai JC, Cooper AJ (1991) Neurotoxicity of ammonia and fatty acids: differential inhibition of mitochondrial dehydrogenases by ammonia and fatty acyl coenzyme a derivatives. Neurochem Res 16:795–803CrossRefPubMedGoogle Scholar
  21. Luiking YC, Poeze M, Deutz NE (2015) Arginine infusion in patients with septic shock increases nitric oxide production without haemodynamic instability. Clin Sci 128:57–67. doi: 10.1042/CS20140343 CrossRefPubMedGoogle Scholar
  22. Merli M, Nicolini G, Angeloni S, Riggio O (2002) Malnutrition is a risk factor in cirrhotic patients undergoing surgery. Nutrition 18:978–986CrossRefPubMedGoogle Scholar
  23. Metter EJ, Talbot LA, Schrager M, Conwit R (2002) Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci 57:B359–B365CrossRefPubMedGoogle Scholar
  24. Millwala F, Nguyen GC, Thuluvath PJ (2007) Outcomes of patients with cirrhosis undergoing non-hepatic surgery: risk assessment and management. World J Gastroenterol 13:4056–4063CrossRefPubMedPubMedCentralGoogle Scholar
  25. Montano-Loza AJ, Meza-Junco J, Prado CMM et al (2012) Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol 10:166–173. doi: 10.1016/j.cgh.2011.08.028 CrossRefPubMedGoogle Scholar
  26. Montano-Loza AJ, Duarte-Rojo A, Bhanji RA, Rose CF (2015) Sarcopenia and Sarcopenic-Obesity are Associated with Hyperammonemia and Increased Risk of Hepatic Encephalopathy in Cirrhotics. In: Hepatology. WILEY-BLACKWELL 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, 62:933A–933AGoogle Scholar
  27. Montoliu C, Piedrafita B, Serra MA et al (2009) IL-6 and IL-18 in blood may discriminate cirrhotic patients with and without minimal hepatic encephalopathy. J Clin Gastroenterol 43:272–279. doi: 10.1097/MCG.0b013e31815e7f58 CrossRefPubMedGoogle Scholar
  28. Nixon J, Zhang M, Wang C et al (2010) Evaluation of a quantitative magnetic resonance imaging system for whole body composition analysis in rodents. Obesity 18:1652–1659. doi: 10.1038/oby.2009.471 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Norenberg MD (2003) Oxidative and nitrosative stress in ammonia neurotoxicity. Hepatology 37:245–248. doi: 10.1053/jhep.2003.50087 CrossRefPubMedGoogle Scholar
  30. O’Brien A, Williams R (2008) Nutrition in end-stage liver disease: principles and practice. Gastroenterology 134:1729–1740. doi: 10.1053/j.gastro.2008.02.001 CrossRefPubMedGoogle Scholar
  31. Pichard C, Kyle UG, Morabia A et al (2004) Nutritional assessment: lean body mass depletion at hospital admission is associated with an increased length of stay. Am J Clin Nutr 79:613–618PubMedGoogle Scholar
  32. Qiu J, Tsien C, Thapalaya S et al (2012) Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab 303:E983–E993. doi: 10.1152/ajpendo.00183.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Qiu J, Thapaliya S, Runkana A et al (2013) Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism. Proc Natl Acad Sci U S A 110:18162–18167. doi: 10.1073/pnas.1317049110 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rombouts K, Bémeur C, Rose CF (2016) Targeting the muscle for the treatment and prevention of hepatic encephalopathy. J Hepatol 65:876–878. doi: 10.1016/j.jhep.2016.08.014 CrossRefPubMedGoogle Scholar
  35. Rose CF (2014) Ammonia: more than a neurotoxin? Liver Int 34:649–651. doi: 10.1111/liv.12518 CrossRefPubMedGoogle Scholar
  36. Rose C, Butterworth RF, Zayed J et al (1999) Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver dysfunction. Gastroenterology 117:640–644. doi: 10.1016/S0016-5085(99)70457-9 CrossRefPubMedGoogle Scholar
  37. Shawcross D, Jalan R (2005) The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation. Cell Mol Life Sci 62:2295–2304. doi: 10.1007/s00018-005-5089-0 CrossRefPubMedGoogle Scholar
  38. Shawcross DL, Sharifi Y, Canavan JB et al (2011) Infection and systemic inflammation, not ammonia, are associated with grade 3/4 hepatic encephalopathy, but not mortality in cirrhosis. J Hepatol 54:640–649CrossRefPubMedGoogle Scholar
  39. Tandon P, Ney M, Irwin I et al (2012) Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl 18:1209–1216. doi: 10.1002/lt.23495 CrossRefPubMedGoogle Scholar
  40. Tilg H, Wilmer A, Vogel W et al (1992) Serum levels of cytokines in chronic liver diseases. Gastroenterology 103:264–274CrossRefPubMedGoogle Scholar
  41. von Baehr V, Döcke WD, Plauth M et al (2000) Mechanisms of endotoxin tolerance in patients with alcoholic liver cirrhosis: role of interleukin 10, interleukin 1 receptor antagonist, and soluble tumour necrosis factor receptors as well as effector cell desensitisation. Gut 47:281–287CrossRefGoogle Scholar
  42. Zhang X-J, Chinkes DL, Wolfe RR (2002) Measurement of muscle protein fractional synthesis and breakdown rates from a pulse tracer injection. Am J Physiol Endocrinol Metab 283:E753–E764. doi: 10.1152/ajpendo.00053.2002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Cristina R. Bosoi
    • 1
  • Mariana M. Oliveira
    • 1
  • Rafael Ochoa-Sanchez
    • 1
  • Mélanie Tremblay
    • 1
  • Gabriella A. Ten Have
    • 2
  • Nicolaas E. Deutz
    • 2
  • Christopher F. Rose
    • 1
  • Chantal Bemeur
    • 1
    • 3
    Email author
  1. 1.Hepato-Neuro Laboratory, CRCHUMUniversité de MontréalMontréalCanada
  2. 2.Center for Translational Research in Aging & Longevity, Department of Health & KinesiologyTexas A&M UniversityCollege StationUSA
  3. 3.Département de nutrition, Faculté de médecineUniversité de MontréalMontréalCanada

Personalised recommendations