Advertisement

Metabolic Brain Disease

, Volume 32, Issue 1, pp 1–17 | Cite as

Diet, gut microbiota and cognition

  • Cicely Proctor
  • Parameth Thiennimitr
  • Nipon Chattipakorn
  • Siriporn C Chattipakorn
Review Article

Abstract

The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host’s gastrointestinal tract are called the ‘gut microbiota’. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as “gut dysbiosis”. It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed “microbiota-gut-brain axis”. In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

Keywords

Obesity A high fat/high sugar diet Cognition Gut microbiota 

Notes

Acknowledgments

This work was supported by Thailand Research Fund grants: TRF-BRG 5780016 (SC) and TRG5880041 (PT); the National Research Council of Thailand (SC); a NSTDA Research Chair Grant from the National Science and Technology Development Agency Thailand (NC) and the Chiang Mai University Center of Excellence Award (NC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alexander C, Rietschel ET (2001) Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167–202PubMedGoogle Scholar
  2. Bäckhed F et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723. doi: 10.1073/pnas.0407076101 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bajaj JS (2014) The role of microbiota in hepatic encephalopathy. Gut Microbes 5:397–403. doi: 10.4161/gmic.28684 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Belkaid Y, Hand TW (2014) Role of the microbioa in immunity and inflammation. Cell 157:121–141Google Scholar
  5. Bercik P (2011) The microbiota-gut-brain axis: learning from intestinal bacteria? Gut 60:288–289. doi: 10.1136/gut.2010.22904710.1136/gut.2010.226779 PubMedCrossRefGoogle Scholar
  6. Bercik P et al (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23:1132–1139. doi: 10.1111/j.1365-2982.2011.01796.x PubMedPubMedCentralCrossRefGoogle Scholar
  7. Berer K et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541. doi: 10.1038/nature10554 PubMedCrossRefGoogle Scholar
  8. Bocarsly ME et al (2015) Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc Natl Acad Sci U S A 112:15731–15736. doi: 10.1073/pnas.1511593112 PubMedPubMedCentralGoogle Scholar
  9. Boden G, Cheung P, Kresge K, Homko C, Powers B, Ferrer L (2014) Insulin resistance is associated with diminished endoplasmic reticulum stress responses in adipose tissue of healthy and diabetic subjects. Diabetes 63:2977–2983. doi: 10.2337/db14-0055 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Boeka AG, Lokken KL (2008) Neuropsychological performance of a clinical sample of extremely obese individuals. Archives of Clinical Neuropsychology : The Official Journal of the National Academy of Neuropsychologists 23:467–474. doi: 10.1016/j.acn.2008.03.003 CrossRefGoogle Scholar
  11. Cani PD et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. doi: 10.2337/db06-1491 PubMedCrossRefGoogle Scholar
  12. Capuron L et al (2007) Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology 32:2384–2392. doi: 10.1038/sj.npp.1301362 PubMedCrossRefGoogle Scholar
  13. Capuron L et al (2012) Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry 69:1044–1053. doi: 10.1001/archgenpsychiatry.2011.2094 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Castanon N, Lasselin J, Capuron L (2014) Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front Endocrinol:5–74. doi: 10.3389/fendo.2014.00074
  15. Castro-Nallar E et al (2015) Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. Peer J 3:e1140. doi: 10.7717/peerj.1140 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Catanzaro R et al (2015) The gut microbiota and its correlations with the central nervous system disorders. Panminerva Med 57:127–143PubMedGoogle Scholar
  17. Chamberlain SR, Derbyshire KL, Leppink E, Grant JE (2015) Obesity and dissociable forms of impulsivity in young adults. CNS spectrums 20:500–507. doi: 10.1017/s1092852914000625 PubMedCrossRefGoogle Scholar
  18. Chen HQ et al (2010) Lactobacillus plantarum ameliorates colonic epithelial barrier dysfunction by modulating the apical junctional complex and PepT1 in IL-10 knockout mice. Am J Physiol Gastrointest Liver Physiol 299:G1287–G1297. doi: 10.1152/ajpgi.00196.2010 PubMedCrossRefGoogle Scholar
  19. Clegg DJ et al (2011) Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav 103:10–16. doi: 10.1016/j.physbeh.2011.01.010 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cordner ZA, Tamashiro KL (2015) Effects of high-fat diet exposure on learning & memory. Physiol Behav. doi: 10.1016/j.physbeh.2015.06.008 PubMedGoogle Scholar
  21. Cox AJ, West NP, Cripps AW (2015) Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 3:207–215. doi: 10.1016/S2213-8587(14)70134-2 PubMedCrossRefGoogle Scholar
  22. David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. doi: 10.1038/nature12820 PubMedCrossRefGoogle Scholar
  23. de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. American journal of physiology - gastrointestinal and liver. Physiology 299:G440–G448. doi: 10.1152/ajpgi.00098.2010 Google Scholar
  24. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF (2014) Microbiota is essential for social development in the mouse. Mol Psychiatry 19:146–148. doi: 10.1038/mp.2013.65 PubMedCrossRefGoogle Scholar
  25. Desbonnet L et al (2015) Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun 48:165–173. doi: 10.1016/j.bbi.2015.04.004 PubMedCrossRefGoogle Scholar
  26. Dinan TG, Stilling RM, Stanton C, Cryan JF (2015) Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res 63:1–9. doi: 10.1016/j.jpsychires.2015.02.021 PubMedCrossRefGoogle Scholar
  27. Donaldson GP, Lee SM, Mazmanian SK (2015) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32. doi: 10.1038/nrmicro3552 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Duerkop BA, Vaishnava S, Hooper LV (2009) Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31:368–376. doi: 10.1016/j.immuni.2009.08.009 PubMedCrossRefGoogle Scholar
  29. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105:141–150. doi: 10.1016/j.diabres.2014.04.006 PubMedCrossRefGoogle Scholar
  30. Ewaschuk JB, Naylor JM, Zello GA (2005) D-lactate in human and ruminant metabolism. J Nutr 135:1619–1625PubMedGoogle Scholar
  31. Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA (2013) The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes 37:216–223. doi: 10.1038/ijo.2012.33 CrossRefGoogle Scholar
  32. Felger JC, Miller AH (2012) Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol 33:315–327. doi: 10.1016/j.yfrne.2012.09.003 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Finegold S, Summanen P, Hunt Gerardo S, Baron E (1992) Clinical importance of Bilophila wadsworthia European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 11:1058–1063Google Scholar
  34. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306. doi: 10.4161/gmic.19897 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Furusawa Y et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory. T Cells Nature 504:446–450. doi: 10.1038/nature12721 PubMedCrossRefGoogle Scholar
  36. Galland L (2014) The gut microbiome and the brain. J Med Food 17:1261–1272. doi: 10.1089/jmf.2014.7000 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gareau MG (2014) Microbiota-gut-brain axis and cognitive function. Adv Exp Med Biol 817:357–371. doi: 10.1007/978-1-4939-0897-4_16 PubMedCrossRefGoogle Scholar
  38. Gareau MG et al (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60:307–317. doi: 10.1136/gut.2009.202515 PubMedCrossRefGoogle Scholar
  39. Gill SR et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359. doi: 10.1126/science.1124234 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445. doi: 10.1146/annurev-immunol-031210-101322 PubMedCrossRefGoogle Scholar
  41. Han HZ, Zhao YJ, Shi CZ, Liang Y, Yang J (2015) Effect of lactobacillus plantarum on intestinal infection in multiple drug-resistant bacteria mice. Surg Infect 16:762–768. doi: 10.1089/sur.2014.222 CrossRefGoogle Scholar
  42. Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37:137–162. doi: 10.1038/npp.2011.205 PubMedCrossRefGoogle Scholar
  43. Haslam DW, James WPT (2005) Obesity. Lancet 366:1197–1209. doi: 10.1016/S0140-6736(05)67483-1 PubMedCrossRefGoogle Scholar
  44. Kang SS et al. (2014) Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener, 9:36 doi: 10.1186/1750-1326-9-36
  45. Kelley KW, Bluthe RM, Dantzer R, Zhou JH, Shen WH, Johnson RW, Broussard SR (2003) Cytokine-induced sickness behavior. Brain Behav Immun 17(Suppl 1):S112–S118PubMedCrossRefGoogle Scholar
  46. Khan NA, Raine LB, Donovan SM, Hillman CH (2014) IV The cognitive implications of obesity and nutrition in childhood. Monogr Soc Res Child Dev 79:51–71PubMedCrossRefGoogle Scholar
  47. Kim Y, Je Y (2015) Dairy consumption and risk of metabolic syndrome: a meta-analysis. Diabet Med. doi: 10.1111/dme.12970 PubMedCentralGoogle Scholar
  48. Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7:e47713. doi: 10.1371/journal.pone.0047713 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8:21–34. doi: 10.1111/j.1467-789X.2006.00270.x PubMedCrossRefGoogle Scholar
  50. Koponen H, Jokelainen J, Keinanen-Kiukaanniemi S, Kumpusalo E, Vanhala M (2008) Metabolic syndrome predisposes to depressive symptoms: a population-based 7-year follow-up study. J Clinic Psych 69:178–182CrossRefGoogle Scholar
  51. Kratz M et al (2014) Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab 20:614–625. doi: 10.1016/j.cmet.2014.08.010 PubMedPubMedCentralCrossRefGoogle Scholar
  52. LeBlanc MM et al (2012) Adiposity and physical activity are not related to academic achievement in school-aged children. J Develop Behav Pediatrics JDBP 33:486–494. doi: 10.1097/DBP.0b013e31825b849e CrossRefGoogle Scholar
  53. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023PubMedCrossRefGoogle Scholar
  54. Liou AP, Paziuk M, Luevano J-M, Machineni S, Turnbaugh PJ, Kaplan LM (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 5:178ra141. doi: 10.1126/scitranslmed.3005687 CrossRefGoogle Scholar
  55. Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1–7. doi: 10.1124/jpet.102.035048 PubMedCrossRefGoogle Scholar
  56. Liu J, Zubieta J-K, Heitzeg M (2012) Sex differences in anterior cingulate cortex activation during impulse inhibition and behavioral correlates. Psychiatry Res 201:54–62. doi: 10.1016/j.pscychresns.2011.05.008 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Logan AC (2015) Dysbiotic drift: mental health, environmental grey space, and microbiota. J Physiol Anthropol 34:23. doi: 10.1186/s40101–015–0061-7 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lyte M, Varcoe JJ, Bailey MT (1998) Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav 65:63–68PubMedCrossRefGoogle Scholar
  59. MacDougall R (2012) NIH Human Microbiomes Project defines normal bacterial makeup of body. National Institues of HealthGoogle Scholar
  60. MacFabe DF (2012) Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis 23:10.3402/mehd.v3423i3400.19260. doi: 10.3402/mehd.v23i0.19260 Google Scholar
  61. Maes M, Mihaylova I, Leunis JC (2007) Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): indication for the involvement of gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut-intestinal permeability. J Affect Disord 99:237–240. doi: 10.1016/j.jad.2006.08.021 PubMedCrossRefGoogle Scholar
  62. Maranduba CM et al (2015) Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis. J Immunol Res 2015:931574. doi: 10.1155/2015/931574 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mariat D et al (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:1–6. doi: 10.1186/1471-2180-9-123 CrossRefGoogle Scholar
  64. Mason TB, Lewis RJ (2015) Assessing the roles of impulsivity, food-related cognitions, BMI, and demographics in the dual pathway model of binge eating among men and women. Eat Behav 18:151–155. doi: 10.1016/j.eatbeh.2015.05.015 PubMedCrossRefGoogle Scholar
  65. Medvidovic S, Titlic M, Maras-Simunic M (2013) P300 evoked potential in patients with mild cognitive impairment. Acta Informatica Medica 21:89–92. doi: 10.5455/aim.2013.21.89-92 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Miyake S et al (2015) Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One 10:e0137429. doi: 10.1371/journal.pone.0137429 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Molteni R, Barnard RJ, Ying Z, Roberts CK, Gómez-Pinilla F (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112:803–814. doi: 10.1016/S0306-4522(02)00123-9 PubMedCrossRefGoogle Scholar
  68. Molteni R, Wu A, Vaynman S, Ying Z, Barnard RJ, Gómez-Pinilla F (2004) Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience 123:429–440. doi: 10.1016/j.neuroscience.2003.09.020 PubMedCrossRefGoogle Scholar
  69. Montiel-Castro AJ, Gonzalez-Cervantes RM, Bravo-Ruiseco G, Pacheco-Lopez G (2013) The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci 7. doi: 10.3389/fnint.2013.00070
  70. Munakata S, Arakawa C, Kohira R, Fujita Y, Fuchigami T, Mugishima H (2010) A case of D-lactic acid encephalopathy associated with use of probiotics. Brain Dev 32:691–694. doi: 10.1016/j.braindev.2009.09.024 PubMedCrossRefGoogle Scholar
  71. Myers JS (2008) Proinflammatory cytokines and sickness behavior: implications for depression and cancer-related symptoms. Oncol Nurs Forum 35:802–807. doi: 10.1188/08.ONF.802-807 PubMedCrossRefGoogle Scholar
  72. NCBI (2015) BDNF brain derived neurotrophic facto [ Homo sapiens (human) ]. GeneGoogle Scholar
  73. Nguyen TLA, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Disease Models Mechanisms 8:1–16. doi: 10.1242/dmm.017400 PubMedPubMedCentralCrossRefGoogle Scholar
  74. O’Mahony SM et al (2014) Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience 277:885–901. doi: 10.1016/j.neuroscience.2014.07.054 PubMedCrossRefGoogle Scholar
  75. Ojeda P, Bobe A, Dolan K, Leone V, Martinez K (2015) Nutritional modulation of gut microbiota - the impact on metabolic disease pathophysiology. J Nutr Biochem. doi: 10.1016/j.jnutbio.2015.08.013 PubMedGoogle Scholar
  76. Org E et al (2015) Genetic and environmental control of host-gut microbiota interactions. Genome Res 25:1558–1569. doi: 10.1101/gr.194118.115 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468. doi: 10.1016/j.tins.2008.06.006 PubMedCrossRefGoogle Scholar
  78. Park HR, Park M, Choi J, Park K-Y, Chung HY, Lee J (2010) A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett 482:235–239. doi: 10.1016/j.neulet.2010.07.046 PubMedCrossRefGoogle Scholar
  79. Pauli-Pott U, Albayrak O, Hebebrand J, Pott W (2010) Association between inhibitory control capacity and body weight in overweight and obese children and adolescents: dependence on age and inhibitory control component. Child Neuropsychology : a Journal on Normal and Abnormal Development in Childhood and Adolescence 16:592–603. doi: 10.1080/09297049.2010.485980 CrossRefGoogle Scholar
  80. Pintana H, Apaijai N, Chattipakorn N, Chattipakorn SC (2013) DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J Endocrinol 218:1–11. doi: 10.1530/joe-12-0521 PubMedCrossRefGoogle Scholar
  81. Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2012) PPARgamma agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology 153:329–338. doi: 10.1210/en.2011-1502 PubMedCrossRefGoogle Scholar
  82. Pratchayasakul W, Kerdphoo S, Petsophonsakul P, Pongchaidecha A, Chattipakorn N, Chattipakorn SC (2011) Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci 88:619–627. doi: 10.1016/j.lfs.2011.02.003 PubMedCrossRefGoogle Scholar
  83. Puwanant M, Mo-Suwan L, Patrapinyokul S (2005) Recurrent D-lactic acidosis in a child with short bowel syndrome. Asia Pac J Clin Nutr 14:195–198PubMedGoogle Scholar
  84. Ridaura VK et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341. doi: 10.1126/science.1241214
  85. Savage DC (1997) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133Google Scholar
  86. Savignac HM, Tramullas M, Kiely B, Dinan TG, Cryan JF (2015) Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav Brain Res 287:59–72. doi: 10.1016/j.bbr.2015.02.044 PubMedCrossRefGoogle Scholar
  87. Semova I, Carten Juliana D, Stombaugh J, Mackey Lantz C, Knight R, Farber Steven A, Rawls John F (2012) Microbiota Regulate Intestinal Absorption and Metabolism of Fatty Acids in the Zebrafish. Cell Host Microbe 12:277–288. doi: 10.1016/j.chom.2012.08.003 PubMedCrossRefGoogle Scholar
  88. Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164:337–340. doi: 10.1016/j.cell.2016.01.013 PubMedCrossRefGoogle Scholar
  89. Sheedy JR et al (2009) Increased d-lactic acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo 23:621–628PubMedGoogle Scholar
  90. Shi CZ et al (2014) Combined probiotic bacteria promotes intestinal epithelial barrier function in interleukin-10-gene-deficient mice. World J Gastroenterol 20:4636–4647. doi: 10.3748/wjg.v20.i16.4636 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shi LL, Li Y, Wang Y, Feng Y (2015) MDG-1, an Ophiopogon polysaccharide, regulate gut microbiota in high-fat diet-induced obese C57BL/6 mice. Int J Biol Macromol 81:576–583. doi: 10.1016/j.ijbiomac.2015.08.057 PubMedCrossRefGoogle Scholar
  92. Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132:2169–2180. doi: 10.1053/j.gastro.2007.03.059 PubMedCrossRefGoogle Scholar
  93. Skowronska M, Albrecht J (2012) Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox Res 21:236–244. doi: 10.1007/s12640-011-9269-4 PubMedCrossRefGoogle Scholar
  94. Smith PM et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573. doi: 10.1126/science.1241165 PubMedCrossRefGoogle Scholar
  95. Sripetchwandee J, Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2014) DPP-4 inhibitor and PPARγ agonist restore the loss of CA1 dendritic spines in obese insulin-resistant rats. Arch Med Res 45:547–552. doi: 10.1016/j.arcmed.2014.09.002 PubMedCrossRefGoogle Scholar
  96. Stilling RM, Dinan TG, Cryan JF (2014) Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis. Genes Brain Behav 13:69–86. doi: 10.1111/gbb.12109 PubMedCrossRefGoogle Scholar
  97. Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18:1085–1088. doi: 10.1002/hipo.20470 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Subramanian V, Ferrante AW Jr (2009) Obesity, inflammation, and macrophages. Nestle Nutrition Workshop Series Paediatric Programme 63:151–159 . doi: 10.1159/000209979discussion 159–162, 259–168
  99. Tascilar ME et al (2011) P300 auditory event-related potentials in children with obesity: is childhood obesity related to impairment in cognitive functions? Pediatr Diabetes 12:589–595. doi: 10.1111/j.1399-5448.2010.00748.x PubMedCrossRefGoogle Scholar
  100. Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783PubMedCrossRefGoogle Scholar
  101. Tillisch K (2014) The effects of gut microbiota on CNS function in humans. Gut Microbes 5:404–410. doi: 10.4161/gmic.29232 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tournoy J et al (2010) Association of cognitive performance with the metabolic syndrome and with glycaemia in middle-aged and older European men: the European Male Ageing Study. Diabetes Metab Res Rev 26:668–676. doi: 10.1002/dmrr.1144 PubMedCrossRefGoogle Scholar
  103. Trayhurn P, Beattie JH (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. The Proceedings of the Nutrition Society 60:329–339PubMedCrossRefGoogle Scholar
  104. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. doi: 10.1038/nature05414 PubMedCrossRefGoogle Scholar
  105. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141:769–776. doi: 10.3945/jn.110.135657 PubMedCrossRefGoogle Scholar
  106. Ursache A, Wedin W, Tirsi A, Convit A (2012) Preliminary evidence for obesity and elevations in fasting insulin mediating associations between cortisol awakening response and hippocampal volumes and frontal atrophy. Psychoneuroendocrinology 37:1270–1276. doi: 10.1016/j.psyneuen.2011.12.020 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ussar S et al (2015) Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metab 22:516–530. doi: 10.1016/j.cmet.2015.07.007 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Vrieze A et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916.e917Google Scholar
  109. Walker JM, Harrison FE (2015) Shared neuropathological characteristics of obesity, type 2 diabetes and Alzheimer’s disease: impacts on cognitive decline. Nutrients 7:7332–7357. doi: 10.3390/nu7095341 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wang GJ et al (2009) Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation. Proc Natl Acad Sci U S A 106:1249–1254. doi: 10.1073/pnas.0807423106 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA (2012) Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci 57:2096–2102. doi: 10.1007/s10620-012-2167-7 PubMedCrossRefGoogle Scholar
  112. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Investig 115:1111–1119. doi: 10.1172/JCI200525102 PubMedPubMedCentralCrossRefGoogle Scholar
  113. WHO (2015) Obesity and overweight WHO Media Centre Fact SheetGoogle Scholar
  114. Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707. doi: 10.1111/j.1460-9568.2004.03246.x PubMedCrossRefGoogle Scholar
  115. Xu H et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830. doi: 10.1172/JCI19451 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yates KF, Sweat V, Yau PL, Turchiano MM, Convit A (2012) Impact of metabolic syndrome on cognition and brain: a selected review of the literature. Arterioscler Thromb Vasc Biol 32:2060–2067. doi: 10.1161/atvbaha.112.252759 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Yoon JH, Minzenberg MJ, Raouf S, D’Esposito M, Carter CS (2013) Impaired prefrontal-basal ganglia functional connectivity and substantia nigra hyperactivity in schizophrenia. Biol Psychiatry 74:122–129. doi: 10.1016/j.biopsych.2012.11.018 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yuan T et al (2015) Pomegranate’s Neuroprotective Effects against Alzheimer’s Disease Are Mediated by Urolithins, Its Ellagitannin-Gut Microbial Derived Metabolites. ACS Chem Neurosci. doi: 10.1021/acschemneuro.5b00260 PubMedCentralGoogle Scholar
  119. Zhang B et al (2015) Altered baseline brain activities before food intake in obese men: a resting state fMRI study. Neurosci Lett 584:156–161. doi: 10.1016/j.neulet.2014.10.020 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Cicely Proctor
    • 1
    • 2
    • 3
    • 4
  • Parameth Thiennimitr
    • 5
  • Nipon Chattipakorn
    • 2
    • 3
    • 4
  • Siriporn C Chattipakorn
    • 2
    • 3
    • 6
  1. 1.Faculty of Life SciencesThe University of ManchesterManchesterUK
  2. 2.Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  3. 3.Cardiac Electrophysiology Unit, Department of Physiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  4. 4.Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
  5. 5.Department of Microbiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  6. 6.Department of Oral Biology and Diagnostic Sciences, Faculty of DentistryChiang Mai UniversityChiang MaiThailand

Personalised recommendations