Metabolic Brain Disease

, Volume 31, Issue 5, pp 1071–1080 | Cite as

Behavioral profile assessment in offspring of Swiss mice treated during pregnancy and lactation with caffeine

  • Roberto Laureano-Melo
  • Anderson Luiz Bezerra da Silveira
  • Fernando de Azevedo Cruz Seara
  • Rodrigo Rodrigues da Conceição
  • Cláudio da Silva-Almeida
  • Bruno Guimarães Marinho
  • Fábio Fagundes da Rocha
  • Luís Carlos Reis
  • Wellington da Silva Côrtes
Original Article


The association between caffeine consumption and various psychiatric manifestations has long been observed. The objective was to assess the behavioral profile in offspring of Swiss mice treated during pregnancy and lactation with caffeine. For this purpose, two groups (n = 6 each and BW ~ 35 g) of female mice were treated during pregnancy and lactation by: tap water and caffeine solution at a concentration of 0.3 mg/mL through oral route. The offspring obtained, by completing 70 days of life, was underwent a behavioral battery test. Statistical analysis was performed by student t test and the different significance adopted was p < 0.05. According to our results, it was not found any significant differences in tail suspension and forced swimming tests. In anxiety related responses however, the mice of caffeine group had greater number of fecal pellets (178 %, p = 0.001) in the open field test, higher number of attempts (51 %, p = 0.03) in light-dark box and decreased percentage of entries in open arms (41 %, p = 0.01) in elevated plus maze test. Moreover, in the marble burying test, there was a significant decrease in the number of buried marbles compared with controls (110 %, p = 0,002). In the meantime, in the von Frey test, it was observed an exacerbation of mechanical allodynia both in basal conditions and after the carrageenan administration (p < 0.001). Furthermore, caffeine treatment during pregnancy and lactation causes long-term behavioral changes in the mice offspring that manifest later in life.


Caffeine Offspring Behavior Anxiety Allodynia Mice 



The authors thank the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq) for granting a fellowship to Roberto Laureano Melo and the Research Support Foundation of the State of Rio de Janeiro (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ) for funding the present study. We also thank Antonio Vicente Conrado Leite José da Costa and Ipojucan Pereira de Souza employers of Federal Rural University of Rio de Janeiro (UFRuralRJ) for the support in the Animal Facility.


  1. Adén U (2011) Methyxanthines during pregnancy and early postnatal life. Handb Exp Pharmacol 200:373–389CrossRefPubMedGoogle Scholar
  2. Andersen SL (2005) Stimulants and the developing brain. Trends Pharmacol Sci 26:237–243CrossRefPubMedGoogle Scholar
  3. Archer J (1973) Tests for emotionality in rats and mice: a review. Anim Behav 21(2):205–235CrossRefPubMedGoogle Scholar
  4. Archer T, Fredriksson A, Lewander T, Söderberg U (1987) Marble burying and spontaneous motor activity in mice: interactions over days and the effect of diazepam. Scand J Psychol 28(3):242–249CrossRefPubMedGoogle Scholar
  5. Bakker R, Steegers EA, Obradov A, Raat H, Hofman A, Jaddoe VW (2010) Maternal caffeine intake from coffee and tea, fetal growth, and the risks of adverse birth outcomes: the generation R study. Am J Clin Nutr 91(6):1691–1698CrossRefPubMedGoogle Scholar
  6. Bastia E, Varani K, Monopoli A, Bertorelli R (2002) Effects of A1 and A2 A adenosine receptor ligands in mouse acute models of pain. Neuroscience Letters 328:241–244CrossRefPubMedGoogle Scholar
  7. Björklund O, Kahlström J, Salmi P, Fredholm BB (2008) Perinatal caffeine, acting on maternal adenosine A1 receptors, causes long-lasting behavioral changes in mouse offspring. PLoS One 3(12):e3977CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bracken MB, Triche EW, Belanger K, Hellenbrand K, Leaderer BP (2003) Association of maternal caffeine consumption with decrements in fetal growth. Am J Epidemiol 157(5):456–466CrossRefPubMedGoogle Scholar
  9. Brent RL, Christian MS, Diener RM (2011) Evaluation of the reproductive and developmental risks of caffeine. Birth Defects Res B Dev Reprod Toxicol 92(2):152–187CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63CrossRefPubMedGoogle Scholar
  11. Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13(2):167–170CrossRefPubMedGoogle Scholar
  12. Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38(2):107–125CrossRefPubMedGoogle Scholar
  13. Cunha RA, Ferré S, Vaugeois JM, Chen JF (2007) Potential therapeutic interest of adenosine A2 A receptors in psychiatric disorders. Curr Pharm Des 14(15):1512–1524CrossRefGoogle Scholar
  14. Da Silva RS, Richetti SK, Silveira VGD, Battastini AMO, Bogo MR, Lara DR, Bonan CD (2008) Maternal caffeine intake affects acetylcholinesterase in hippocampus of neonate rats. Int J Dev Neurosci 26(3):339–343CrossRefPubMedGoogle Scholar
  15. El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2000) The anxiogenic-like effect of caffeine in two experimental procedures measuring anxiety in the mouse is not shared by selective A2 A adenosine receptor antagonists. Psychopharmacology 148(2):153–163CrossRefPubMedGoogle Scholar
  16. El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2005) Reduced appetite for caffeine in adenosine A2 A receptor knockout mice. Eur J Pharmacol 519(3):290–291CrossRefPubMedGoogle Scholar
  17. Fisher CE, Hughes RN (1996) Effects of diazepam and cyclohexyladenosine on open-field behavior in rats perinatally exposed to caffeine. Life Sci 58(8):701–709CrossRefPubMedGoogle Scholar
  18. Foxe JJ, Morie KP, Laud PJ, Rowson MJ, de Bruin EA, Kelly SP (2012) Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology 62(7):2320–2327CrossRefPubMedGoogle Scholar
  19. Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51(1):83–133PubMedGoogle Scholar
  20. Giménez-Llort L, Fernández-Teruel A, Escorihuela RM, Fredholm BB, Tobeña A, Pekny M, Johansson B (2002) Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur J Neurosci 16(3):547–550CrossRefPubMedGoogle Scholar
  21. Ginsberg G, Hattis D, Russ A, Sonawane B (2004) Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonates and adults: implications for assessing children’s risks from environmental agents. J Toxic Environ Health A 67(4):297–329CrossRefGoogle Scholar
  22. Green PJ, Suls J (1996) The effects of caffeine on ambulatory blood pressure, heart rate, and mood in coffee drinkers. J Behav Med 19(2):111–128CrossRefPubMedGoogle Scholar
  23. Grimm VE, Frieder B (1988) Prenatal caffeine causes long lasting behavioral and neurochemical changes. Int J Neurosci 41(1–2):15–28CrossRefPubMedGoogle Scholar
  24. Groisser DS, Rosso P, Winick M (1982) Coffee consumption during pregnancy: subsequent behavioral abnormalities of the offspring. J Nutr 112(4):829–832PubMedGoogle Scholar
  25. Grosso LM, Bracken MB (2005) Caffeine metabolism, genetics, and perinatal outcomes: a review of exposure assessment considerations during pregnancy. Ann Epidemiol 15(6):460–466CrossRefPubMedGoogle Scholar
  26. Haskell CF, Kennedy DO, Wesnes KA, Scholey AB (2005) Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology 179(4):813–825CrossRefPubMedGoogle Scholar
  27. Heckman MA, Weil J, Mejia D, Gonzalez E (2010) Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75(3):R77–R87CrossRefPubMedGoogle Scholar
  28. Higgins GA, Grzelak ME, Pond AJ, Cohen-Williams ME, Hodgson RA, Varty GB (2007) The effect of caffeine to increase reaction time in the rat during a test of attention is mediated through antagonism of adenosine a 2 a receptors. Behav Brain Res 185(1):32–42CrossRefPubMedGoogle Scholar
  29. Hughes RN, Beveridge IJ (1990) Sex-and age-dependent effects of prenatal exposure to caffeine on open-field behavior, emergence latency and adrenal weights in rats. Life Sci 47(22):2075–2088CrossRefPubMedGoogle Scholar
  30. Hughes RN, Beveridge IJ (1991) Behavioral effects of exposure to caffeine during gestation, lactation or both. Neurotoxicol Teratol 13(6):641–647CrossRefPubMedGoogle Scholar
  31. Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Giménez-Llort L, Escorihuela RM, Fernández-Teruel A, Wiesenfeld-Halin Z, Xu XJ, Hardermark A, Betsholtz C, Herlenius E, Fredholm BB (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci 98(16):9407–9412CrossRefPubMedPubMedCentralGoogle Scholar
  32. Juárez-méndez S, Carretero R, Martínez-Tellez R, Silva-gómez AB, Flores G (2006) Neonatal caffeine administration causes a permanent increase in the dendritic length of prefrontal cortical neurons of rats. Synapse 60(6):450–455CrossRefPubMedGoogle Scholar
  33. Karlsten R, Post C, Hide I, Daly JW (1991) The antinociceptive effect of intrathecally administered adenosine analogs in mice correlates with the affinity for the A1-adenosine receptor. Neuroscie Lett 121:267–270CrossRefGoogle Scholar
  34. Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassant G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388(6643):674–678CrossRefPubMedGoogle Scholar
  35. León D, Albasanz JL, Ruiz MA, Martin M (2005) Chronic caffeine or theophylline intake during pregnancy inhibits A1 receptor function in the rat brain. Neuroscience 131(2):481–489CrossRefPubMedGoogle Scholar
  36. Loke WH (1988) Effects of caffeine on mood and memory. Physiol Behav 44(3):367–372CrossRefPubMedGoogle Scholar
  37. Lombardelli G, Balduini W, Feduzi A, Peruzzi G, Cattabeni F (1984) Long-lasting tolerance to stimulatory effects of perinatal caffeine treatment. Psychopharmacology 84(2):285–286CrossRefPubMedGoogle Scholar
  38. Lorenzo AM, León D, Castillo CA, Ruiz MA, Albasanz JL, Martín M (2010) Maternal caffeine intake during gestation and lactation down-regulates adenosine A1 receptor in rat brain from mothers and neonates. J Neurosci Res 88:1252–1261CrossRefPubMedGoogle Scholar
  39. Millan MJ, Girardon S, Mullot J, Brocco M, Dekeyne A (2002) Stereospecific blockade of marble-burying behaviour in mice by selective, non-peptidergic neurokinin 1 (NK 1) receptor antagonists. Neuropharmacology 42(5):677–684CrossRefPubMedGoogle Scholar
  40. Ogawa N, Ueki H (2007) Clinical importance of caffeine dependence and abuse. Psychiatry Clin Neurosci 61(3):263–268CrossRefPubMedGoogle Scholar
  41. Pan HZ, Chen HH (2007) Hyperalgesia, low-anxiety, and impairment of avoidance learning in neonatal caffeine-treated rats. Psychopharmacology 191(1):119–125CrossRefPubMedGoogle Scholar
  42. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167CrossRefPubMedGoogle Scholar
  43. Porciúncula LO, Sallaberry C, Mioranzza S, Botton PHS, Rosemberg DB (2013) The Janus face of caffeine. Neurochem Int 63(6):594–609CrossRefPubMedGoogle Scholar
  44. Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266(5604):730–732CrossRefPubMedGoogle Scholar
  45. Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M (1979) Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 57(2):201–210CrossRefPubMedGoogle Scholar
  46. Rybak ME, Sternberg MR, Pao CI, Ahluwalia N, Pfeiffer CM (2015) Urine excretion of caffeine and select caffeine metabolites is common in the US population and associated with caffeine intake. J Nutr 145(4):766–774CrossRefPubMedGoogle Scholar
  47. Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 317:1–11CrossRefGoogle Scholar
  48. Shi D, Nikodijević O, Jacobson KA, Daly JW (1993) Chronic caffeine alters the density of adenosine, adrenergic, cholinergic, GABA, and serotonin receptors and calcium channels in mouse brain. Cell Mol Neurobiol 13(3):247–261CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shiotsuki H, Yoshimi K, Shimo Y, Funayama M, Takamatsu Y, Ikeda K, Takahashi R, Kitazawa S, Hattori N (2010) A rotarod test for evaluation of motor skill learning. J Neurosci Methods 189(2):180–185CrossRefPubMedGoogle Scholar
  50. Silva CG, Métin C, Fazeli W, Machado NJ, Darmopil S, Launay PS, Ghestem A, Nesa MP, Bassot E, Szabó E, Baqi Y, Müller CE, Tomé AR, Ivanov A, Isbrandt D, Zilberter Y, Cunha RA, Esclapez M, Bernard C (2013) Adenosine receptor antagonists including caffeine alter fetal brain development. Sci Transl Med 5(197):1–12CrossRefGoogle Scholar
  51. Sinton CM, Valatx JL, Jouvet M (1981) Gestational caffeine modifies offspring behaviour in mice. Psychopharmacology 75(1):69–74CrossRefPubMedGoogle Scholar
  52. Soellner DE, Grandys T, Nuñez JL (2009) Chronic prenatal caffeine exposure impairs novel object recognition and radial arm maze behaviors in adult rats. Behav Brain Res 205(1):191–199CrossRefPubMedPubMedCentralGoogle Scholar
  53. Taiwo YO, Levine JD (1990) Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 38:757–762CrossRefPubMedGoogle Scholar
  54. Tchekalarova J, Kubova H, Mares P (2005) Postnatal caffeine exposure: effects on motor skills and locomotor activity during ontogenesis. Behav Brain Res 160:99–106CrossRefPubMedGoogle Scholar
  55. Thierry B, Steru L, Simon P, Porsolt RD (1986) The tail suspension test: ethical considerations. Psychopharmacology 90(2):284–285CrossRefPubMedGoogle Scholar
  56. Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R (2009) Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology 204(2):361–373CrossRefPubMedPubMedCentralGoogle Scholar
  57. Van Dort CJ, Baghdoyan HA, Lydic R (2009) Adenosine A1 and A2 A receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 29(3):871–881CrossRefPubMedPubMedCentralGoogle Scholar
  58. Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83(3):482CrossRefPubMedGoogle Scholar
  59. Wang HR, Woo YS, Bahk WM (2015) Caffeine-induced psychiatric manifestations: a review. Int Clin Psychopharmacol 30(4):179–182CrossRefPubMedGoogle Scholar
  60. Wicke KM, Gross G (2005) Marble burying behavior is prevented by anxiolytics as well as by motorstimulants. Pharmacopsychiatry 38(05):A253CrossRefGoogle Scholar
  61. Wu WP, Hao JX, Halldner L, Lövdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113:395–404CrossRefPubMedGoogle Scholar
  62. Yacoubi ME, Ledent C, Parmentier M, Bertorelli R, Ongini E, Costentin J, Vaugeois JM (2001) Adenosine A2 A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2 A receptor knockout mice. Br J Pharmacol 134(1):68–77CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zimmerberg B, Carr KL, Scott A, Lee HH, Weider JM (1991) The effects of postnatal caffeine exposure on growth, activity and learning in rats. Pharmacol Biochem Behav 39(4):883–888CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Roberto Laureano-Melo
    • 1
  • Anderson Luiz Bezerra da Silveira
    • 1
    • 2
  • Fernando de Azevedo Cruz Seara
    • 3
  • Rodrigo Rodrigues da Conceição
    • 1
  • Cláudio da Silva-Almeida
    • 1
  • Bruno Guimarães Marinho
    • 1
    • 3
  • Fábio Fagundes da Rocha
    • 1
    • 3
  • Luís Carlos Reis
    • 1
    • 3
  • Wellington da Silva Côrtes
    • 1
    • 3
  1. 1.Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological SciencesFederal Rural University of Rio de JaneiroSeropedicaBrazil
  2. 2.Department of Physical Education, Institute of EducationFederal Rural University of Rio de JaneiroSeropédicaBrazil
  3. 3.Graduate Program in Physiological Sciences, Institute of Biological and Health Sciences, Department of Physiological SciencesFederal Rural University of Rio de JaneiroSeropedicaBrazil

Personalised recommendations