Metabolic Brain Disease

, Volume 31, Issue 6, pp 1249–1258 | Cite as

Brain edema: a valid endpoint for measuring hepatic encephalopathy?

  • Chantal Bémeur
  • Cristina Cudalbu
  • Gitte Dam
  • Alexander S. Thrane
  • Arthur J. L. Cooper
  • Christopher F. RoseEmail author
Original Article


Hepatic encephalopathy (HE) is a major complication of liver failure/disease which frequently develops during the progression of end-stage liver disease. This metabolic neuropsychiatric syndrome involves a spectrum of symptoms, including cognition impairment, attention deficits and motor dysfunction which eventually can progress to coma and death. Pathologically, HE is characterized by swelling of the astrocytes which consequently leads to brain edema, a common feature found in patients with acute liver failure (ALF) as well as in cirrhotic patients suffering from HE. The pathogenic factors involved in the onset of astrocyte swelling and brain edema in HE are unresolved. However, the role of astrocyte swelling/brain edema in the development of HE remains ambiguous and therefore measuring brain edema as an endpoint to evaluate HE is questioned. The following review will determine the effect of astrocyte swelling and brain edema on neurological function, discuss the various possible techniques to measure brain edema and lastly to propose a number of neurobehavioral tests to evaluate HE.


Brain edema Hepatic encephalopathy Astrocyte Magnetic resonance imaging Neurobehavior 



Hepatic encephalopathy


Acute liver failure


Glial fibrillary acid protein


Cerebrospinal fluid


Regulatory volume decrease


Magnetic resonance imaging


Diffusion weighted imaging


Fast fluid-attenuated inversion recovery


Bile-duct ligation


Portacaval anastomosis


Compliance with ethical standards


The authors have no conflicts to disclose.


  1. Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug F-M, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, et al. (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 100:2106–2111CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amodio P, Campagna F, Olianas S, Iannizzi P, Mapelli D, Penzo M, Angeli P, Gatta A (2008) Detection of minimal hepatic encephalopathy: normalization and optimization of the psychometric hepatic encephalopathy score. A neuropsychological and quantified EEG study J Hepatol 49:346–353PubMedGoogle Scholar
  3. Anderova M, Benesova J, Mikesova M, Dzamba D, Honsa P, Kriska J, Butenko O, Novosadova V, Valihrach L, Kubista M, et al. (2014) Altered astrocytic swelling in the cortex of alpha-syntrophin-negative GFAP/EGFP mice. PLoS One 9:e113444CrossRefPubMedPubMedCentralGoogle Scholar
  4. Antunes M, Biala G (2011) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110CrossRefPubMedPubMedCentralGoogle Scholar
  5. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215CrossRefPubMedGoogle Scholar
  6. Bajaj JS, Saeian K, Verber MD, Hischke D, Hoffmann RG, Franco J, Varma RR, Rao SM (2007) Inhibitory control test is a simple method to diagnose minimal hepatic encephalopathy and predict development of overt hepatic encephalopathy. Am J Gastroenterol 102:754–760CrossRefPubMedGoogle Scholar
  7. Bajaj JS, Thacker LR, Heuman DM, Fuchs M, Sterling RK, Sanyal AJ, Puri P, Siddiqui MS, Stravitz RT, Bouneva I, et al. (2013) The Stroop smartphone application is a short and valid method to screen for minimal hepatic encephalopathy. Hepatology 58:1122–1132CrossRefPubMedPubMedCentralGoogle Scholar
  8. Binder DK, Yao X, Zador Z, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53:631–636CrossRefPubMedGoogle Scholar
  9. Bloch O, Papadopoulos MC, Manley GT, Verkman AS (2005) Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J Neurochem 95:254–262CrossRefPubMedGoogle Scholar
  10. Bosoi CR, Rose CF (2013) Brain edema in acute liver failure and chronic liver disease: similarities and differences. Neurochem Int 62:446–457CrossRefPubMedGoogle Scholar
  11. Bosoi CR, Parent-Robitaille C, Anderson K, Tremblay M, Rose CF (2011) AST-120 (spherical carbon adsorbent) lowers ammonia levels and attenuates brain edema in bile duct-ligated rats. Hepatology 53:1995–2002CrossRefPubMedGoogle Scholar
  12. Bosoi CR, Yang X, Huynh J, Parent-Robitaille C, Jiang W, Tremblay M, Rose CF (2012) Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure. Free Radic Biol Med 52:1228–1235CrossRefPubMedGoogle Scholar
  13. Bosoi CR, Zwingmann C, Marin H, Parent-Robitaille C, Huynh J, Tremblay M, Rose CF (2014) Increased brain lactate is central to the development of brain edema in rats with chronic liver disease. J Hepatol 60:554–560CrossRefPubMedGoogle Scholar
  14. Braissant O, McLin VA, Cudalbu C (2013) Ammonia toxicity to the brain. J Inherit Metab Dis 36:595–612CrossRefPubMedGoogle Scholar
  15. Butterworth RF (2015) Pathogenesis of hepatic encephalopathy and brain edema in acute liver failure. J Clin Exp Hepatol 5:S96–S103CrossRefPubMedGoogle Scholar
  16. Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V (2007) Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 46:514–519CrossRefPubMedGoogle Scholar
  17. Córdoba J, Alonso J, Rovira A, Jacas C, Sanpedro F, Castells L, Vargas V, Margarit C, Kulisewsky J, Esteban R, et al. (2001) The development of low-grade cerebral edema in cirrhosis is supported by the evolution of (1)H-magnetic resonance abnormalities after liver transplantation. J Hepatol 35:598–604CrossRefPubMedGoogle Scholar
  18. Cotrina ML, Lin JH, López-García JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844PubMedGoogle Scholar
  19. Cudalbu C (2013) In vivo studies of brain metabolism in animal models of hepatic encephalopathy using 1H magnetic resonance spectroscopy. Metab Brain Dis 28:167–174CrossRefPubMedGoogle Scholar
  20. D’Hooge R, Deyn PPD (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90CrossRefPubMedGoogle Scholar
  21. Dam G, Thomsen KL, Gras V, Vilstrup H, Ott P, Wintherdahl M (2015) P0113 : regional cerebral water content in hepatic encephalopathy measured by MRI. J Hepatol 62:S343CrossRefGoogle Scholar
  22. Denenberg VH (1969) Open-field behavior in the rat : what does it mean? Ann N Y Acad Sci 159:852–859CrossRefPubMedGoogle Scholar
  23. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav. Brain Res 31:47–59Google Scholar
  24. Evanko DS, Zhang Q, Zorec R, Haydon PG (2004) Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia 47:233–240CrossRefPubMedGoogle Scholar
  25. Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14:851–858CrossRefPubMedGoogle Scholar
  26. Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT (2002) Hepatic encephalopathy–definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th world congresses of gastroenterology, Vienna, 1998. Hepatology 35:716–721CrossRefPubMedGoogle Scholar
  27. Fukuda AM, Adami A, Pop V, Bellone JA, Coats JS, Hartman RE, Ashwal S, Obenaus A, Badaut J (2013) Posttraumatic reduction of edema with aquaporin-4 RNA interference improves acute and chronic functional recovery. J Cereb Blood Flow Metab 33:1621–1632CrossRefPubMedPubMedCentralGoogle Scholar
  28. Haj-Yasein NN, Jensen V, Østby I, Omholt SW, Voipio J, Kaila K, Ottersen OP, Hvalby Ø, Nagelhus EA (2012) Aquaporin-4 regulates extracellular space volume dynamics during high-frequency synaptic stimulation: a gene deletion study in mouse hippocampus. Glia 60:867–874CrossRefPubMedGoogle Scholar
  29. Häussinger D (2000) Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 32:1035–1038CrossRefPubMedGoogle Scholar
  30. Häussinger D, Laubenberger J, Dahl SV, Ernst T, Bayer S, Langer M, Gerok W, Hennig J (1994) Proton magnetic resonance spectroscopy studies on human brain Myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107:1475–1480CrossRefPubMedGoogle Scholar
  31. Hayazaki K, Matsuoka Y, Kan M, Hakuba A (1995) Variation in equation coefficients in the gravimetric method to determine brain water content. Neurol Med Chir 35:69–74CrossRefGoogle Scholar
  32. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, et al. (2012) A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid. Sci Transl Med 4:147ra111–ra147ra111CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jones BJ, Roberts DJ (1968) The quantitative measurement of motor inco-ordination in naive mice using an accelerating rotarod. J Pharm Pharmacol 20:302–304CrossRefPubMedGoogle Scholar
  34. Karus C, Mondragão MA, Ziemens D, Rose CR (2015) Astrocytes restrict discharge duration and neuronal sodium loads during recurrent network activity. Glia 63:936–957CrossRefPubMedGoogle Scholar
  35. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103CrossRefPubMedGoogle Scholar
  36. Kato M, Hughes RD, Keays RT, Williams R (1992) Electron microscopic study of brain capillaries in cerebral edema from fulminant hepatic failure. Hepatology 15:1060–1066CrossRefPubMedGoogle Scholar
  37. Kimelberg HK (1987) Anisotonic media and glutamate-induced ion transport and volume responses in primary astrocyte cultures. J Physiol (Paris) 82:294–303Google Scholar
  38. Kircheis G, Wettstein M, Timmermann L, Schnitzler A, Häussinger D (2002) Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 35:357–366CrossRefPubMedGoogle Scholar
  39. Kumar R, Gupta RK, Elderkin-Thompson V, Huda A, Sayre J, Kirsch C, Guze B, Han S, Thomas MA (2008) Voxel-based diffusion tensor magnetic resonance imaging evaluation of low-grade hepatic encephalopathy. J Magn Reson Imaging 27:1061–1068CrossRefPubMedGoogle Scholar
  40. Lauridsen MM, Thiele M, Kimer N, Vilstrup H (2013) The continuous reaction times method for diagnosing, grading, and monitoring minimal/covert hepatic encephalopathy. Metab Brain Dis 28:231–234CrossRefPubMedGoogle Scholar
  41. Lee WM (2012) Acute liver failure. Semin Respir Crit Care Med 33:36–45CrossRefPubMedGoogle Scholar
  42. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, et al. (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341CrossRefPubMedPubMedCentralGoogle Scholar
  43. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163CrossRefPubMedGoogle Scholar
  44. Marmarou A, Poll W, Shulman K, Bhagavan H (1978) A simple gravimetric technique for measurement of cerebral edema. J Neurosurg 49:530–537CrossRefPubMedGoogle Scholar
  45. McPhail MJW, Patel NR, Taylor-Robinson SD (2012) Brain imaging and hepatic encephalopathy. Clin Liver Dis 16:57–72CrossRefPubMedGoogle Scholar
  46. Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE (2012) Alexander disease. J Neurosci 32:5017–5023CrossRefPubMedPubMedCentralGoogle Scholar
  47. Meyer OA, Tilson HA, Byrd WC, Riley MT (1979) A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav Toxicol 1:233–236PubMedGoogle Scholar
  48. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60CrossRefPubMedGoogle Scholar
  49. Mulligan SJ, MacVicar BA (2006) VRACs CARVe a Path for Novel Mechanisms of Communication in the CNS. Science STKE 2006:pe42CrossRefGoogle Scholar
  50. Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93:1543–1562CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nedergaard M (2013) Garbage truck of the brain. Science 340:1529–1530CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nedergaard M, Verkhratsky A (2012) Artifact versus reality-how astrocytes contribute to synaptic events. Glia 60:1013–1023CrossRefPubMedPubMedCentralGoogle Scholar
  53. Neeb H, Zilles K, Shah NJ (2006) A new method for fast quantitative mapping of absolute water content in vivo. NeuroImage 31:1156–1168CrossRefPubMedGoogle Scholar
  54. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180PubMedGoogle Scholar
  55. O’Grady JG (2008) Intracranial pressure and acute liver failure: a “finger on the pulse.”. Liver Transpl 14:915–916CrossRefPubMedGoogle Scholar
  56. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553CrossRefPubMedGoogle Scholar
  57. Oberheim NA, Tian G-F, Han X, Peng W, Takano T, Ransom B, Nedergaard M (2008) Loss of astrocytic domain Organization in the Epileptic Brain. J Neurosci 28:3264–3276CrossRefPubMedGoogle Scholar
  58. Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process 2:97–116CrossRefGoogle Scholar
  59. Ordaz B, Tuz K, Ochoa LD, Lezama R, Peña-Segura C, Franco R (2004) Osmolytes and mechanisms involved in regulatory volume decrease under conditions of sudden or gradual osmolarity decrease. Neurochem Res 29:65–72CrossRefPubMedGoogle Scholar
  60. Oria M, Chatauret N, Chavarria L, Romero-Giménez J, Palenzuela L, Pardo-Yules B, Arranz JA, Bodega G, Raguer N, Córdoba J (2010) Motor-evoked potentials in awake rats are a valid method of assessing hepatic encephalopathy and of studying its pathogenesis. Hepatology 52:2077–2085CrossRefPubMedGoogle Scholar
  61. Papadopoulos MC, Verkman AS (2005) Aquaporin-4 Gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem 280:13906–13912CrossRefPubMedGoogle Scholar
  62. Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277CrossRefPubMedPubMedCentralGoogle Scholar
  63. Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291–1293PubMedGoogle Scholar
  64. Pellerin L, Bouzier-Sore A-K, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262CrossRefPubMedGoogle Scholar
  65. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci 14:149–167Google Scholar
  66. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33CrossRefPubMedGoogle Scholar
  67. Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated Anion Channel. Cell 157:447–458CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rangroo Thrane V, Thrane AS, Wang F, Cotrina ML, Smith NA, Chen M, Xu Q, Kang N, Fujita T, Nagelhus EA, et al. (2013) Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med 19:1643–1648CrossRefPubMedGoogle Scholar
  69. Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26:520–522CrossRefPubMedGoogle Scholar
  70. Rao KVR, Verkman AS, Curtis KM, Norenberg MD (2014) Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure. Neurobiol Dis 63:222–228CrossRefGoogle Scholar
  71. Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, Giese RN, Wang B, Shi X, Nedergaard M (2013) `hit & run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab 33:834–845CrossRefPubMedPubMedCentralGoogle Scholar
  72. Risher WC, Andrew RD, Kirov SA (2009) Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia 57:207–221CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rodrigo R, Cauli O, Gomez-Pinedo U, Agusti A, Hernandez-Rabaza V, Garcia-Verdugo J-M, Felipo V (2010) Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology 139:675–684CrossRefPubMedGoogle Scholar
  74. Rose CR, Ransom BR (1997) Gap junctions equalize intracellular Na + concentration in astrocytes. Glia 20:299–307CrossRefPubMedGoogle Scholar
  75. Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41:1518–1524CrossRefPubMedGoogle Scholar
  76. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555CrossRefPubMedGoogle Scholar
  77. Rovira A, Mínguez B, Aymerich FX, Jacas C, Huerga E, Córdoba J, Alonso J (2007) Decreased white matter lesion volume and improved cognitive function after liver transplantation. Hepatology 46:1485–1490CrossRefPubMedGoogle Scholar
  78. Rovira A, Alonso J, Córdoba J (2008) MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol 29:1612–1621CrossRefPubMedGoogle Scholar
  79. Schliess F, Foster N, Görg B, Reinehr R, Häussinger D (2004) Hypoosmotic swelling increases protein tyrosine nitration in cultured rat astrocytes. Glia 47:21–29CrossRefPubMedGoogle Scholar
  80. Shah NJ, Neeb H, Zaitsev M, Steinhoff S, Kircheis G, Amunts K, Häussinger D, Zilles K (2003) Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging. Hepatology 38:1219–1226CrossRefPubMedGoogle Scholar
  81. Shah NJ, Neeb H, Kircheis G, Engels P, Häussinger D, Zilles K (2008) Quantitative cerebral water content mapping in hepatic encephalopathy. NeuroImage 41:706–717CrossRefPubMedGoogle Scholar
  82. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V (2007) Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 6:258–268CrossRefPubMedPubMedCentralGoogle Scholar
  83. Spahr L, Burkhard PR, Grötzsch H, Hadengue A (2002) Clinical significance of basal ganglia alterations at brain MRI and 1H MRS in cirrhosis and role in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 17:399–413CrossRefPubMedGoogle Scholar
  84. Stanford SC (2007) The open field test: reinventing the wheel. J Psychopharm 21:134–135CrossRefGoogle Scholar
  85. Sugimoto R, Iwasa M, Maeda M, Urawa N, Tanaka H, Fujita N, Kobayashi Y, Takeda K, Kaito M, Takei Y (2008) Value of the apparent diffusion coefficient for quantification of low-grade hepatic encephalopathy. Am J Gastroenterol 103:1413–1420CrossRefPubMedGoogle Scholar
  86. Sun W, McConnell E, Pare J-F, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339:197–200CrossRefPubMedPubMedCentralGoogle Scholar
  87. Swanson RA, Graham SH (1994) Fluorocitrate and fluoroacetate effects on astrocyte metabolism in vitro. Brain Res 664:94–100CrossRefPubMedGoogle Scholar
  88. Syková E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tait MJ, Saadoun S, Bell BA, Verkman AS, Papadopoulos MC (2010) Increased brain edema in aqp4-null mice in an experimental model of subarachnoid hemorrhage. Neuroscience 167:60–67CrossRefPubMedPubMedCentralGoogle Scholar
  90. Takano T, Tian G-F, Peng W, Lou N, Lovatt D, Hansen AJ, Kasischke KA, Nedergaard M (2007) Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci 10:754–762CrossRefPubMedGoogle Scholar
  91. Thrane AS, Rappold PM, Fujita T, Torres A, Bekar LK, Takano T, Peng W, Wang F, Rangroo Thrane V, Enger R, et al. (2011) Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc Natl Acad Sci U S A 108:846–851CrossRefPubMedGoogle Scholar
  92. Thrane AS, Takano T, Thrane VR, Wang F, Peng W, Ottersen OP, Nedergaard M, Nagelhus EA (2013) In vivo NADH fluorescence imaging indicates effect of aquaporin-4 deletion on oxygen microdistribution in cortical spreading depression. J Cereb Blood Flow Metab 33:996–999CrossRefPubMedPubMedCentralGoogle Scholar
  93. Thrane AS, Thrane VR, Nedergaard M (2014) Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci 37:620–628CrossRefPubMedPubMedCentralGoogle Scholar
  94. Thrane AS, Rangroo Thrane V, Plog BA, Nedergaard M (2015) Filtering the muddied waters of brain edema. Trends Neurosci 38:333–335CrossRefPubMedGoogle Scholar
  95. Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 Heteromers as an essential component of the volume-regulated Anion Channel VRAC. Science 344:634–638CrossRefPubMedGoogle Scholar
  96. Wang M, Iliff JJ, Liao Y, Chen MJ, Shinseki MS, Venkataraman A, Cheung J, Wang W, Nedergaard M (2012) Cognitive deficits and delayed neuronal loss in a mouse model of multiple Microinfarcts. J Neurosci 32:17948–17960CrossRefPubMedPubMedCentralGoogle Scholar
  97. Weissenborn K, Ennen JC, Schomerus H, Rückert N, Hecker H (2001) Neuropsychological characterization of hepatic encephalopathy. J Hepatol 34:768–773CrossRefPubMedGoogle Scholar
  98. Wright G, Davies NA, Shawcross DL, Hodges SJ, Zwingmann C, Brooks HF, Mani AR, Harry D, Stadlbauer V, Zou Z, et al. (2007) Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology 45:1517–1526CrossRefPubMedGoogle Scholar
  99. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, et al. (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chantal Bémeur
    • 1
    • 2
  • Cristina Cudalbu
    • 3
  • Gitte Dam
    • 4
  • Alexander S. Thrane
    • 5
    • 6
  • Arthur J. L. Cooper
    • 7
  • Christopher F. Rose
    • 2
    Email author
  1. 1.Département de nutritionUniversité de MontréalQuébecCanada
  2. 2.Hepato-Neuro Laboratory, CRCHUMUniversité de MontréalQuébecCanada
  3. 3.Centre d’Imagerie Biomédicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  4. 4.Department of Medicine V (Hepatology and Gastroenterology)AarhusDenmark
  5. 5.Department of OphthalmologyHaukeland University HospitalBergenNorway
  6. 6.Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of NeurosurgeryUniversity of Rochester Medical CenterNew YorkUSA
  7. 7.Department of Biochemistry and Molecular BiologyNew York Medical CollegeNew YorkUSA

Personalised recommendations