Metabolic Brain Disease

, Volume 30, Issue 6, pp 1429–1438 | Cite as

Low visual cortex GABA levels in hepatic encephalopathy: links to blood ammonia, critical flicker frequency, and brain osmolytes

  • Georg OeltzschnerEmail author
  • Markus Butz
  • Thomas J. Baumgarten
  • Nienke Hoogenboom
  • Hans-Jörg Wittsack
  • Alfons Schnitzler
Original Article


The pathogenesis of hepatic encephalopathy (HE) is not fully understood yet. Hyperammonemia due to liver failure and subsequent disturbance of cerebral osmolytic balance is thought to play a pivotal role in the emergence of HE. The aim of this in-vivo MR spectroscopy study was to investigate the levels of γ-aminobutyric acid (GABA) and its correlations with clinical symptoms of HE, blood ammonia, critical flicker frequency, and osmolytic levels. Thirty patients with minimal HE or HE1 and 16 age-matched healthy controls underwent graduation of HE according to the West-Haven criteria and including the critical flicker frequency (CFF), neuropsychometric testing and blood testing. Edited proton magnetic resonance spectroscopy (1H MRS) was used to non-invasively measure the concentrations of GABA, glutamate (Glu), glutamine (Gln), and myo-inositol (mI) - all normalized to creatine (Cr) - in visual and sensorimotor cortex. GABA/Cr in the visual area was significantly decreased in mHE and HE1 patients and correlated both to the CFF (r = 0.401, P = 0.013) and blood ammonia levels (r = −0.434, P = 0.006). Visual GABA/Cr was also strongly linked to mI/Cr (r = 0.720, P < 0.001) and Gln/Cr (r = −0.699, P < 0.001). No group differences or correlations were found for GABA/Cr in the sensorimotor area. Hepatic encephalopathy is associated with a regional specific decrease of GABA levels in the visual cortex, while no changes were revealed for the sensorimotor cortex. Correlations of visual GABA/Cr with CFF, blood ammonia, and osmolytic regulators mI and Gln indicate that decreased visual GABA levels might contribute to HE symptoms, most likely as a consequence of hyperammonemia.


Hepatic encephalopathy MR spectroscopy γ-aminobutyric acid Ammonia Critical flicker frequency MEGA-PRESS 



hepatic encephalopathy


critical flicker frequency


magnetic resonance spectroscopy


γ-aminobutyric acid










Mescher-Garwood point resolved spectroscopy


repetition time


echo time


field of view


Cramér-Rao lower bounds




gray matter


white matter


cerebrospinal fluid





The authors would like to express their thanks to Dr. James Murdoch (Toshiba Medical Research Institute USA) for the LCModel basis set and useful discussion on spectral evaluation, Nur-Deniz Füllenbach and Dr. Gerald Kircheis (Department of Gastroenterology, Hepatology and Infectiology, University Hospital Düsseldorf) for help with patient recruitment and psychometric grading, and Erika Rädisch (Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf) for support with MR measurements.


This work was supported by the Sonderforschungsbereich (SFB) 974 of the Deutsche Forschungsgemeinschaft (DFG).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alonso J, Córdoba J, Rovira A (2014) Brain magnetic resonance in hepatic encephalopathy. Semin. Ultrasound CT MRI 35:136–152CrossRefGoogle Scholar
  2. Behar KL, Rothman DL, Petersen KF, Hooten M, Delaney R, Petroff OAC, Shulman GI, Navarro V, Petrakis IL, Charney DS, et al. (1999) Preliminary evidence of low cortical GABA levels in localized 1 H-MR spectra of alcohol-dependent and hepatic encephalopathy patients. Am J Psychiatry 156:952–954CrossRefPubMedGoogle Scholar
  3. Binesh N, Huda A, Bugbee M, Gupta R, Rasgon N, Kumar A, Green M, Han S, Thomas MA (2005) Adding another spectral dimension to 1 H magnetic resonance spectroscopy of hepatic encephalopathy. J Magn Reson Imaging 21:398–405CrossRefPubMedGoogle Scholar
  4. Binesh N, Huda A, Thomas MA, Wyckoff N, Bugbee M, Han S, Rasgon N, Davanzo P, Sayre J, Guze B, et al. (2006) Hepatic encephalopathy: a neurochemical, neuroanatomical, and neuropsychological study. J Appl Clin Med Phys Am Coll Med Phys 7:86–96CrossRefGoogle Scholar
  5. Butterworth RF (2000) Complications of cirrhosis III. Hepatic encephalopathy. J Hepatol 32(Supplement 1):171–180CrossRefPubMedGoogle Scholar
  6. Butz M, May ES, Häussinger D, Schnitzler A (2013) The slowed brain: cortical oscillatory activity in hepatic encephalopathy. Arch Biochem Biophys 536:197–203CrossRefPubMedGoogle Scholar
  7. Cauli O, Rodrigo R, Llansola M, Montoliu C, Monfort P, Piedrafita B, Mlili N el, Boix J, Agustí A, Felipo V (2008) Glutamatergic and gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy. Metab Brain Dis 24:69–80Google Scholar
  8. Cauli O, Mansouri MT, Agusti A, Felipo V (2009) Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology 136:1359–1367CrossRefPubMedGoogle Scholar
  9. Chavarria L, Alonso J, García-Martínez R, Simón-Talero M, Ventura-Cots M, Ramírez C, Torrens M, Vargas V, Rovira A, Córdoba J (2013) Brain magnetic resonance spectroscopy in episodic hepatic encephalopathy. J Cereb Blood Flow Metab 33:272–277PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cousijn H, Haegens S, Wallis G, Near J, Stokes MG, Harrison PJ, Nobre AC (2014) Resting GABA and glutamate concentrations do not predict visual gamma frequency or amplitude. Proc Natl Acad Sci U S A 111:9301–9306PubMedCentralCrossRefPubMedGoogle Scholar
  11. Edden RAE, Muthukumaraswamy SD, Freeman TCA, Singh KD (2009) Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J. Neurosci. 29:15721–15726CrossRefPubMedGoogle Scholar
  12. Edden RAE, Puts NAJ, Harris AD, Barker PB, Evans CJ (2014) Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J Magn Reson Imaging 40:1445–1452CrossRefPubMedGoogle Scholar
  13. Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14:851–858CrossRefPubMedGoogle Scholar
  14. Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT (2002) Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th world congresses of gastroenterology, Vienna, 1998. Hepatology 35:716–721CrossRefPubMedGoogle Scholar
  15. Gaetz W, Edgar JC, Wang DJ, Roberts TPL (2011) Relating MEG measured motor cortical oscillations to resting γ-aminobutyric acid (GABA) concentration. NeuroImage 55:616–621PubMedCentralCrossRefPubMedGoogle Scholar
  16. Harris AD, Puts NAJ, Barker PB, Edden RAE (2014) Spectral-editing measurements of GABA in the human brain with and without macromolecule suppression. Magn Reson Med Published Online: December 17, 2014. doi: 10.1002/mrm.25549
  17. Häussinger D, Schliess F (2008) Pathogenetic mechanisms of hepatic encephalopathy. Gut 57:1156–1165CrossRefPubMedGoogle Scholar
  18. Häussinger D, Sies H (2013) Hepatic encephalopathy: clinical aspects and pathogenetic concept. Arch Biochem Biophys 536:97–100CrossRefPubMedGoogle Scholar
  19. Häussinger D, Laubenberger J, Vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W, Hennig J (1994) Proton magnetic resonance spectroscopy studies on human brain Myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107:1475–1480CrossRefPubMedGoogle Scholar
  20. Hone-Blanchet A, Salas RE, Celnik P, Kalloo A, Schar M, Puts NAJ, Harris AD, Barker PB, Fecteau S, Earley CJ, et al. (2015) Co-registration of magnetic resonance spectroscopy and transcranial magnetic stimulation. J Neurosci Methods 242:52–57CrossRefPubMedGoogle Scholar
  21. Jensen JE, Frederick BB, Renshaw PF (2005) Grey and white matter GABA level differences in the human brain using two-dimensional. J-Resolved spectroscopic Imaging NMR Biomed 18:570–576PubMedGoogle Scholar
  22. Kahlbrock N, Butz M, May ES, Brenner M, Kircheis G, Häussinger D, Schnitzler A (2012) Lowered frequency and impaired modulation of gamma band oscillations in a bimodal attention task are associated with reduced critical flicker frequency. NeuroImage 61:216–227CrossRefPubMedGoogle Scholar
  23. Kircheis G, Wettstein M, Timmermann L, Schnitzler A, Häussinger D (2002) Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 35:357–366CrossRefPubMedGoogle Scholar
  24. Kircheis G, Hilger N, Häussinger D (2014) Value of critical flicker frequency and psychometric hepatic encephalopathy score in diagnosis of low-grade hepatic encephalopathy. Gastroenterology 146:961–969CrossRefPubMedGoogle Scholar
  25. Laubenberger J, Häussinger D, Bayer S, Gufler H, Hennig J, Langer M (1997) Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis. Gastroenterology 112:1610–1616CrossRefPubMedGoogle Scholar
  26. Llansola M, Montoliu C, Agusti A, Hernandez-Rabaza V, Cabrera-Pastor A, Gomez-Gimenez B, Malaguarnera M, Dadsetan S, Belghiti M, Garcia-Garcia R, et al. (2014) Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy. Neurochem Int. doi: 10.1016/j.neuint.2014.10.011 PubMedGoogle Scholar
  27. Mardini H, Smith FE, Record CO, Blamire AM (2011) Magnetic resonance quantification of water and metabolites in the brain of cirrhotics following induced hyperammonaemia. J Hepatol 54:1154–1160CrossRefPubMedGoogle Scholar
  28. Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11:266–272CrossRefPubMedGoogle Scholar
  29. Miese F, Kircheis G, Wittsack HJ, Wenserski F, Hemker J, Mödder U, Häussinger D, Cohnen M (2006) 1 H-MR spectroscopy, magnetization transfer, and diffusion-weighted imaging in alcoholic and nonalcoholic patients with cirrhosis with hepatic encephalopathy. Am J Neuroradiol 27:1019–1026PubMedGoogle Scholar
  30. Mullins PG, McGonigle DJ, O’Gorman RL, Puts NAJ, Vidyasagar R, Evans CJ, Edden RAE (2014) Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. NeuroImage 86:43–52PubMedCentralCrossRefPubMedGoogle Scholar
  31. Muthukumaraswamy SD, Edden RAE, Jones DK, Swettenham JB, Singh KD (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci 106:8356–8361PubMedCentralCrossRefPubMedGoogle Scholar
  32. Palomero-Gallagher N, Zilles K (2013) Neurotransmitter receptor alterations in hepatic encephalopathy: a review. Arch Biochem Biophys 536:109–121CrossRefPubMedGoogle Scholar
  33. Provencher SW (2001) Automatic quantitation of localized in vivo1H spectra with LCModel. NMR Biomed 14:260–264CrossRefPubMedGoogle Scholar
  34. Puts NAJ, Edden RAE (2012) In vivo magnetic resonance spectroscopy of GABA: a methodological review. Prog Nucl Magn Reson Spectrosc 60:29–41PubMedCentralCrossRefPubMedGoogle Scholar
  35. Rae CD (2013) A guide to the metabolic pathways and function of metabolites observed in human brain 1 H magnetic resonance spectra. Neurochem Res 39:1–36CrossRefPubMedGoogle Scholar
  36. Sandberg K, Blicher JU, Dong MY, Rees G, Near J, Kanai R (2014) Occipital GABA correlates with cognitive failures in daily life. NeuroImage 87:55–60PubMedCentralCrossRefPubMedGoogle Scholar
  37. Schafer DF, Jones EA (1982) Hepatic encephalopathy and the gamma-aminobutyric-acid neurotransmitter system. Lancet 319:18–20CrossRefGoogle Scholar
  38. Sergeeva OA (2013) GABAergic transmission in hepatic encephalopathy. Arch Biochem Biophys 536:122–130CrossRefPubMedGoogle Scholar
  39. Shah NJ, Neeb H, Kircheis G, Engels P, Häussinger D, Zilles K (2008) Quantitative cerebral water content mapping in hepatic encephalopathy. NeuroImage 41:706–717CrossRefPubMedGoogle Scholar
  40. Shawcross DL, Balata S, Damink SWMO, Hayes PC, Wardlaw J, Marshall I, Deutz NEP, Williams R, Jalan R (2004) Low myo-inositol and high glutamine levels in brain are associated with neuropsychological deterioration after induced hyperammonemia. Am J Physiol - Gastrointest Liver Physiol 287:G503–G509CrossRefPubMedGoogle Scholar
  41. Singhal A, Nagarajan R, Hinkin CH, Kumar R, Sayre J, Elderkin-Thompson V, Huda A, Gupta RK, Han S-H, Thomas MA (2010) Two-dimensional MR spectroscopy of minimal hepatic encephalopathy and neuropsychological correlates in vivo. J Magn Reson Imaging 32:35–43CrossRefPubMedGoogle Scholar
  42. Stagg CJ, Bachtiar V, Johansen-Berg H (2011) What are we measuring with GABA magnetic resonance Spectroscopy? Commun Integr Biol 4:573–575PubMedCentralCrossRefPubMedGoogle Scholar
  43. Terhune DB, Russo S, Near J, Stagg CJ, Kadosh RC (2014) GABA predicts time perception. J Neurosci 34:4364–4370PubMedCentralCrossRefPubMedGoogle Scholar
  44. Thomas MA, Huda A, Guze B, Curran J, Bugbee M, Fairbanks L, Ke Y, Oshiro T, Martin P, Fawzy F (1998) Cerebral 1 H MR spectroscopy and neuropsychologic status of patients with hepatic encephalopathy. Am J Roentgenol 171:1123–1130CrossRefGoogle Scholar
  45. Timmermann L, Gross J, Butz M, Kircheis G, Häussinger D, Schnitzler A (2003) Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology 61:689–692CrossRefPubMedGoogle Scholar
  46. Wijtenburg SA, Knight-Scott J (2011) Very short echo time improves the precision of glutamate detection at 3 T in 1 H magnetic resonance spectroscopy. J Magn Reson Imaging 34:645–652CrossRefPubMedGoogle Scholar
  47. Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new Landmark Brain 120:141–157CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Georg Oeltzschner
    • 1
    • 2
    Email author
  • Markus Butz
    • 1
  • Thomas J. Baumgarten
    • 1
  • Nienke Hoogenboom
    • 1
  • Hans-Jörg Wittsack
    • 2
  • Alfons Schnitzler
    • 1
  1. 1.Institute of Clinical Neuroscience and Medical Psychology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
  2. 2.Medical Faculty, Department of Diagnostic and Interventional RadiologyUniversity DüsseldorfDüsseldorfGermany

Personalised recommendations