Advertisement

Metabolic Brain Disease

, Volume 30, Issue 5, pp 1237–1246 | Cite as

The antioxidant effect of astaxanthin is higher in young mice than aged: a region specific study on brain

  • Md. Mamun Al-Amin
  • Samiha Akhter
  • Ahmed Tasdid Hasan
  • Tanzir Alam
  • S. M. Nageeb Hasan
  • A. R. M. Saifullah
  • Mohammad Shohel
Research Article

Abstract

Astaxanthin is a potential antioxidant which shows neuroprotective property. We aimed to investigate the age-dependent and region-specific antioxidant effects of astaxanthin in mice brain. Animals were divided into 4 groups; treatment young (3 months, n = 6) (AY), treatment old (16 months, n = 6) (AO), placebo young (3 months, n = 6) (PY) and placebo old (16 months, n = 6) (PO) groups. Treatment group was given astaxanthin (2 mg/kg/day, body weight), and placebo group was given 100 μl of 0.9 % normal saline orally to the healthy Swiss albino mice for 4 weeks. The level of non-enzymatic oxidative markers namely malondialdehyde (MDA); nitric oxide (NO); advanced protein oxidation product (APOP); glutathione (GSH) and the activity of enzymatic antioxidants i.e.; catalase (CAT) and superoxide dismutase (SOD) were determined from the isolated brain regions. Treatment with astaxanthin significantly (p < 0.05) reduces the level of MDA, APOP, NO in the cortex, striatum, hypothalamus, hippocampus and cerebellum in both age groups. Astaxanthin markedly (p < 0.05) enhances the activity of CAT and SOD enzymes while improves the level of GSH in the brain. Overall, improvement of oxidative markers was significantly greater in the young group than the aged animal. In conclusion, we report that the activity of astaxanthin is age-dependent, higher in young in compared to the aged brain.

Keywords

Astaxanthin Antioxidant Aging Brain 

Notes

Conflict of interest

There are no conflicts of interests with other organizations. No fund was received or no funding organization was involved in this study.

References

  1. Al-Amin MM et al. (2014) Tadalafil enhances working memory, and reduces hippocampal oxidative stress in both young and aged mice. Eur J Pharmacol 745:84–90. doi: 10.1016/j.ejphar.2014.10.026 CrossRefPubMedGoogle Scholar
  2. Al-Amin MM, Rahman MM, Khan FR, Zaman F, Mahmud Reza H (2015) Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav Brain Res 286:112–121. doi: 10.1016/j.bbr.2015.02.041 CrossRefPubMedGoogle Scholar
  3. Alper G, Sozemen EY, Kanit L, Mentes G, Ersoz B, Kutay FZ (1998) Age-related alterations in superoxide dismutase and catalase activities in rat brain. Turk J Med Sci 28:491–494Google Scholar
  4. Barros MP, Poppe SC, Bondan EF (2014) Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients 6:1293–1317. doi: 10.3390/nu6031293 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bhuvaneswari S, Yogalakshmi B, Sreeja S, Anuradha CV (2014) Astaxanthin reduces hepatic endoplasmic reticulum stress and nuclear factor-kappaB-mediated inflammation in high fructose and high fat diet-fed mice. Cell Stress Chaperones 19:183–191. doi: 10.1007/s12192-013-0443-x PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bolanos JP, Heales SJ, Peuchen S, Barker JE, Land JM, Clark JB (1996) Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radic Biol Med 21:995–1001CrossRefPubMedGoogle Scholar
  7. Cakatay U, Aydin S, Yanar K, Uzun H (2010) Gender-dependent variations in systemic biomarkers of oxidative protein, DNA, and lipid damage in aged rats. Aging Male Off J Int Soc Study Aging Male 13:51–58. doi: 10.3109/13685530903236470 CrossRefGoogle Scholar
  8. Cakatay U, Telci A, Kayali R, Tekeli F, Akcay T, Sivas A (2001) Relation of oxidative protein damage and nitrotyrosine levels in the aging rat brain. Exp Gerontol 36:221–229CrossRefPubMedGoogle Scholar
  9. Chan KC, Mong MC, Yin MC (2009) Antioxidative and anti-inflammatory neuroprotective effects of astaxanthin and canthaxanthin in nerve growth factor differentiated PC12 cells. J Food Sci 74:H225–H231. doi: 10.1111/j.1750-3841.2009.01274.x CrossRefPubMedGoogle Scholar
  10. Chang CH, Chen CY, Chiou JY, Peng RY, Peng CH (2010) Astaxanthine secured apoptotic death of PC12 cells induced by beta-amyloid peptide 25–35: its molecular action targets. J Med Food 13:548–556. doi: 10.1089/jmf.2009.1291 CrossRefPubMedGoogle Scholar
  11. Dei R et al. (2002) Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer’s disease. Acta Neuropathol 104:113–122. doi: 10.1007/s00401-002-0523-y CrossRefPubMedGoogle Scholar
  12. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350. doi: 10.1038/nrn2822 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Park Dis 3:461–491. doi: 10.3233/jpd-130230 Google Scholar
  14. Dringen R, Brandmann M, Hohnholt MC, Blumrich EM (2014) Glutathione-dependent detoxification processes in astrocytes. Neurochem Res. doi: 10.1007/s11064-014-1481-1 Google Scholar
  15. Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569PubMedGoogle Scholar
  16. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefPubMedGoogle Scholar
  17. Floyd RA, Hensley K (2002) Oxidative stress in brain aging. Implications Ther Neurodegener Dis Neurobiol Aging 23:795–807CrossRefGoogle Scholar
  18. Gemma C, Mesches MH, Sepesi B, Choo K, Holmes DB, Bickford PC (2002) Diets enriched in foods with high antioxidant activity reverse age-induced decreases in cerebellar beta-adrenergic function and increases in proinflammatory cytokines. J Neurosci 22:6114–6120Google Scholar
  19. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17:2492–2498PubMedGoogle Scholar
  20. Harooni HE, Naghdi N, Sepehri H, Rohani AH (2009) The role of hippocampal nitric oxide (NO) on learning and immediate, short- and long-term memory retrieval in inhibitory avoidance task in male adult rats. Behav Brain Res 201:166–172. doi: 10.1016/j.bbr.2009.02.011 CrossRefPubMedGoogle Scholar
  21. Haxaire C et al. (2012) Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting D-serine-dependent NMDA receptor activation. Aging Cell 11:336–344. doi: 10.1111/j.1474-9726.2012.00792.x CrossRefPubMedGoogle Scholar
  22. Horton TM, Graham BH, Corral-Debrinski M, Shoffner JM, Kaufman AE, Beal MF, Wallace DC (1995) Marked increase in mitochondrial DNA deletion levels in the cerebral cortex of Huntington's disease patients. Neurology 45:1879–1883CrossRefPubMedGoogle Scholar
  23. Ikebe S et al. (1990) Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 170:1044–1048CrossRefPubMedGoogle Scholar
  24. Inada K, Yokoi I, Kabuto H, Habu H, Mori A, Ogawa N (1996) Age-related increase in nitric oxide synthase activity in senescence accelerated mouse brain and the effect of long-term administration of superoxide radical scavenger. Mech Ageing Dev 89:95–102. doi: 10.1016/0047-6374(96)01743-5 CrossRefPubMedGoogle Scholar
  25. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495. doi: 10.1038/386493a0 CrossRefPubMedGoogle Scholar
  26. Kolosova N, Shcheglova T, Sergeeva S, Loskutova L (2006) Long-term antioxidant supplementation attenuates oxidative stress markers and cognitive deficits in senescent-accelerated OXYS rats. Neurobiol Aging 27:1289–1297CrossRefPubMedGoogle Scholar
  27. Koutsilieri E, Scheller C, Tribl F, Riederer P (2002) Degeneration of neuronal cells due to oxidative stress–microglial contribution. Parkinsonism Relat Disord 8:401–406CrossRefPubMedGoogle Scholar
  28. Lee SJ et al. (2003) Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing I(kappa)B kinase-dependent NF-kappaB activation. Mol Cell 16:97–105Google Scholar
  29. Li F, Yang Z, Lu Y, Wei Y, Wang J, Yin D, He R (2010) Malondialdehyde suppresses cerebral function by breaking homeostasis between excitation and inhibition in turtle trachemys scripta. PLoS One 5:e15325. doi: 10.1371/journal.pone.0015325 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Lin TY, Lu CW, Wang SJ (2010) Astaxanthin inhibits glutamate release in rat cerebral cortex nerve terminals via suppression of voltage-dependent Ca(2+) entry and mitogen-activated protein kinase signaling pathway. J Agric Food Chem 58:8271–8278. doi: 10.1021/jf101689t CrossRefPubMedGoogle Scholar
  31. Liu X, Osawa T (2009) Astaxanthin protects neuronal cells against oxidative damage and is a potent candidate for brain food. Forum Nutr 61:129–135. doi: 10.1159/000212745 CrossRefPubMedGoogle Scholar
  32. Ma L et al. (2010) Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31:99–105. doi: 10.1016/j.biomaterials.2009.09.028 CrossRefPubMedGoogle Scholar
  33. Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS, Strafaci JA, Freedman ML (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 150:40–44. doi: 10.1006/exnr.1997.6750 CrossRefPubMedGoogle Scholar
  34. Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: An overview. J Chromatogr B 827:65–75. doi: 10.1016/j.jchromb.2005.04.023 CrossRefGoogle Scholar
  35. Matsuo M, Ikeda H, Sugihara T, Horiike S, Okano Y, Masaki H (2004) Resistance of cultured human skin fibroblasts from old and young donors to oxidative stress and their glutathione peroxidase activity. Gerontology 50:193–199. doi: 10.1159/000078347 CrossRefPubMedGoogle Scholar
  36. Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146. doi: 10.1351/pac199163010141 CrossRefGoogle Scholar
  37. Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354. doi: 10.1016/j.neurobiolaging.2004.05.010 CrossRefPubMedGoogle Scholar
  38. Nicolle MM et al. (2001) Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neuroscience 107:415–431CrossRefPubMedGoogle Scholar
  39. Niehaus WG, Samuelsson B (1968) Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130. doi: 10.1111/j.1432-1033.1968.tb00428.x CrossRefPubMedGoogle Scholar
  40. Padurariu M, Ciobica A, Lefter R, Serban IL, Stefanescu C, Chirita R (2013) The oxidative stress hypothesis in Alzheimer’s disease. Psychiatr Danub 25:401–409PubMedGoogle Scholar
  41. Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676CrossRefPubMedGoogle Scholar
  42. Shinagawa H, Yamano M, Saijo T, Muratsugu M (2013) Protective activity of antioxidants in the hypothalamic paraventricular nucleus of chronic restraint-stressed mice. J Life Sci Res 11:1–4Google Scholar
  43. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394. doi: 10.1016/0003-2697(72)90132-7 CrossRefPubMedGoogle Scholar
  44. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A 88:10540–10543PubMedCentralCrossRefPubMedGoogle Scholar
  45. Tanapat P, Galea LA, Gould E (1998) Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus. Int J Dev Neurosci 16:235–239CrossRefPubMedGoogle Scholar
  46. Tracey WR, Tse J, Carter G (1995) Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J Pharmacol Exp Ther 272:1011–1015PubMedGoogle Scholar
  47. Tsay HJ, Wang P, Wang SL, Ku HH (2000) Age-associated changes of superoxide dismutase and catalase activities in the rat brain. J Biomed Sci 7:466–474Google Scholar
  48. Vaishnav RA, Singh IN, Miller DM, Hall ED (2010) Lipid peroxidation-derived reactive aldehydes directly and differentially impair spinal cord and brain mitochondrial function. J Neurotrauma 27:1311–1320. doi: 10.1089/neu.2009.1172 PubMedCentralCrossRefPubMedGoogle Scholar
  49. Villeda SA et al. (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20:659–663. doi: 10.1038/nm.3569. http://www.nature.com/nm/journal/v20/n6/abs/nm.3569.html#supplementary-information.
  50. Wang P, Xie K, Wang C, Bi J (2014a) Oxidative stress induced by lipid peroxidation is related with inflammation of demyelination and neurodegeneration in multiple sclerosis. Eur Neurol 72:249–254. doi: 10.1159/000363515 PubMedGoogle Scholar
  51. Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X (2014b) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842:1240–1247. doi: 10.1016/j.bbadis.2013.10.015 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Witko-Sarsat V et al. (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313CrossRefPubMedGoogle Scholar
  53. Wu W et al. (2014) Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food & Funct 5:158–166. doi: 10.1039/c3fo60400d CrossRefGoogle Scholar
  54. Zhu Y, Carvey PM, Ling Z (2006) Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res 1090:35–44. doi: 10.1016/j.brainres.2006.03.063 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Md. Mamun Al-Amin
    • 1
  • Samiha Akhter
    • 1
  • Ahmed Tasdid Hasan
    • 1
  • Tanzir Alam
    • 1
  • S. M. Nageeb Hasan
    • 1
  • A. R. M. Saifullah
    • 1
  • Mohammad Shohel
    • 1
  1. 1.Department of Pharmaceutical SciencesNorth South UniversityBashundharaBangladesh

Personalised recommendations