Advertisement

Metabolic Brain Disease

, Volume 30, Issue 4, pp 895–901 | Cite as

Hyperinsulinemia in newly diagnosed patients with multiple sclerosis

  • Adela Penesova
  • Miroslav Vlcek
  • Richard Imrich
  • Lucia Vernerova
  • Andrea Marko
  • Milada Meskova
  • Lucia Grunnerova
  • Peter Turcani
  • Daniela Jezova
  • Branislav KollarEmail author
Original Paper

Abstract

There are limited data regarding glucose metabolism dysregulation in multiple sclerosis (MS). Present study investigates glucose and insulin response during oral glucose tolerance test (oGTT) in MS patients. We examined 19 MS patients and 19 age, sex and body mass index (BMI) matched healthy controls. MS patients were newly diagnosed, untreated and with low Expanded Disability Status Scale (EDSS) score (1.1 ± 0.7). Plasma glucose, lactate, insulin and GLP-1 during oGTT, and fasting adipokines, lipid and inflammatory parameters were analyzed. Insulin sensitivity indices (ISI) were calculated. MS patients had comparable fasting (5.2 ± 0.3 vs. 5.0 ± 0.4 mmol/l, p = 0.05) and post-load glucose concentrations as controls. Insulin response to oral glucose load in MS was increased (p = 0.022). Insulin sensitivity was lower in MS compared to controls [ISI(Matsuda) 6.95 ± 3.44 vs. 10.60 ± 4.81, p = 0.011 and ISI(Cederholm) 49.9 ± 15.3 vs. 61.3 ± 16.3, p = 0.032]. We did not find any difference in lactate, GLP-1, total, HDL and LDL cholesterol, triglycerides, interleukin 6, tumor necrosis factor, C-reactive protein, resistin, leptin, adiponectin levels between groups. We found decreased insulin sensitivity with postprandial hyperinsulinemia in MS patients, which seems not to be related to chronic inflammation or physical inactivity. The role of hyperinsulinemia in CNS function impairment should be further investigated.

Keywords

Multiple sclerosis Insulin resistance Glucose metabolism Inflammation Adipokines Autonomic dysfunction 

Notes

Acknowledgments

The authors appreciate the skillful technical assistance of Maria Marejkova and Jana Stibrana. This work was supported by the Slovak Research and Development Agency (grant number APVV- 0028-10).

All authors reviewed and edited the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adamec I, Habek M (2013) Autonomic dysfunction in multiple sclerosis. Clin Neurol Neurosurg 115(Suppl 1):S73–S78. doi: 10.1016/j.clineuro.2013.09.026 PubMedCrossRefGoogle Scholar
  2. Amorini AM et al (2014) Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim Biophys Acta 1842:1137–1143. doi: 10.1016/j.bbadis.2014.04.005 PubMedCrossRefGoogle Scholar
  3. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL (1991) Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 87:2246–2252. doi: 10.1172/JCI115260 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bellocco R, Jia C, Ye W, Lagerros YT (2010) Effects of physical activity, body mass index, waist-to-hip ratio and waist circumference on total mortality risk in the Swedish National March Cohort. Eur J Epidemiol 25:777–788. doi: 10.1007/s10654-010-9497-6 PubMedCrossRefGoogle Scholar
  5. Bergouignan A, Rudwill F, Simon C, Blanc S (2011) Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol (1985) 111:1201–1210. doi: 10.1152/japplphysiol.00698.2011 CrossRefGoogle Scholar
  6. Bright JJ, Walline CC, Kanakasabai S, Chakraborty S (2008) Targeting PPAR as a therapy to treat multiple sclerosis. Expert Opin Ther Targets 12(12):1565–1575. doi: 10.1517/14728220802515400 PubMedCrossRefGoogle Scholar
  7. Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17:819–837. doi: 10.1016/j.cmet.2013.04.008 PubMedCrossRefGoogle Scholar
  8. Cederholm J, Wibell L (1990) Insulin release and peripheral sensitivity at the oral glucose tolerance test. Diabetes Res Clin Pract 10:167–175PubMedCrossRefGoogle Scholar
  9. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517. doi: 10.1016/S0140-6736(08)61620-7 PubMedCrossRefGoogle Scholar
  10. de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 9:35–66PubMedCentralPubMedCrossRefGoogle Scholar
  11. de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61PubMedGoogle Scholar
  12. Dreyer M, Matthaei S, Kuhnau J, Rudiger HW (1986) Prolonged plasma half-life of insulin in patients with a genetic defect of high affinity binding sites. Horm Metab Res 18:247–249. doi: 10.1055/s-2007-1012285 PubMedCrossRefGoogle Scholar
  13. Edwards LJ, Constantinescu CS (2004) A prospective study of conditions associated with multiple sclerosis in a cohort of 658 consecutive outpatients attending a multiple sclerosis clinic. Mult Scler 10:575–581PubMedCrossRefGoogle Scholar
  14. Gong X, Xie Z, Zuo H (2008) Invivo insulin deficiency as a potential etiology for demyelinating disease. Med Hypotheses 71:399–403. doi: 10.1016/j.mehy.2008.04.006 PubMedCrossRefGoogle Scholar
  15. Harris MI et al (1998) Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 21:518–524PubMedCrossRefGoogle Scholar
  16. Hietaharju A, Kuusisto H, Nieminen R, Vuolteenaho K, Elovaara I, Moilanen E (2010) Elevated cerebrospinal fluid adiponectin and adipsin levels in patients with multiple sclerosis: a Finnish co-twin study. Eur J Neurol 17:332–334. doi: 10.1111/j.1468-1331.2009.02701.x PubMedCrossRefGoogle Scholar
  17. Hussein WI, Reddy SS (2006) Prevalence of diabetes in patients with multiple sclerosis. Diabetes Care 29(8):1984–1985PubMedCrossRefGoogle Scholar
  18. Kim JH, Bachmann RA, Chen J (2009) Interleukin-6 and insulin resistance. Vitam Horm 80:613–633. doi: 10.1016/S0083-6729(08)00621-3 PubMedCrossRefGoogle Scholar
  19. Kraszula L, Jasinska A, Eusebio M, Kuna P, Glabinski A, Pietruczuk M (2012) Evaluation of the relationship between leptin, resistin, adiponectin and natural regulatory T cells in relapsing-remitting multiple sclerosis. Neurol Neurochir Pol 46:22–28PubMedGoogle Scholar
  20. Lagerros YT, Mucci LA, Bellocco R, Nyren O, Balter O, Balter KA (2006) Validity and reliability of self-reported total energy expenditure using a novel instrument. Eur J Epidemiol 21:227–236. doi: 10.1007/s10654-006-0013-y PubMedCrossRefGoogle Scholar
  21. Liang G, Cline GW, Macica CM (2007) IGF-1 stimulates de novo fatty acid biosynthesis by Schwann cells during myelination. Glia 55:632–641. doi: 10.1002/glia.20496 PubMedCrossRefGoogle Scholar
  22. Licht CM, de Geus EJ, Penninx BW (2013) Dysregulation of the autonomic nervous system predicts the development of the metabolic syndrome. J Clin Endocrinol Metab 98:2484–2493. doi: 10.1210/jc.2012-3104 PubMedCrossRefGoogle Scholar
  23. Mahler A, Steiniger J, Bock M, Brandt AU, Haas V, Boschmann M, Paul F (2012) Is metabolic flexibility altered in multiple sclerosis patients? PLoS ONE 7:e43675. doi: 10.1371/journal.pone.0043675 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Martins TB, Rose JW, Jaskowski TD, Wilson AR, Husebye D, Seraj HS, Hill HR (2011) Analysis of proinflammatory and anti-inflammatory cytokine serum concentrations in patients with multiple sclerosis by using a multiplexed immunoassay. Am J Clin Pathol 136:696–704. doi: 10.1309/AJCP7UBK8IBVMVNR PubMedCrossRefGoogle Scholar
  25. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470PubMedCrossRefGoogle Scholar
  26. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  27. Oliveira SR et al (2014) Disability in patients with multiple sclerosis: influence of insulin resistance, adiposity, and oxidative stress. Nutrition 30:268–273. doi: 10.1016/j.nut.2013.08.001 PubMedCrossRefGoogle Scholar
  28. Pedersen BK, Febbraio M (2005) Muscle-derived interleukin-6–a possible link between skeletal muscle, adipose tissue, liver, and brain. Brain Behav Immun 19:371–376. doi: 10.1016/j.bbi.2005.04.008 PubMedCrossRefGoogle Scholar
  29. Pellacani A et al (1999) Acute methylprednisolone administration induces a transient alteration of glucose tolerance and pyruvate dehydrogenase in humans. Eur J Clin Investig 29:861–867CrossRefGoogle Scholar
  30. Penesova A, Radikova Z, Cizmarova E, Kvetnanský R, Blazicek P, Vlcek M, Koska J, Vigas M (2008) The role of norepinephrine and insulin resistance in an early stage of hypertension. Ann N Y Acad Sci 1148:490–494. doi: 10.1196/annals.1410.036 PubMedCrossRefGoogle Scholar
  31. Petersen KF et al (2006) Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc Natl Acad Sci U S A 103:18273–18277. doi: 10.1073/pnas.0608537103 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Regenold WT, Phatak P, Makley MJ, Stone RD, Kling MA (2008) Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J Neurol Sci 275:106–112. doi: 10.1016/j.jns.2008.07.032 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Strachan MW, Deary IJ, Ewing FM, Frier BM (1997) Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care 20:438–445PubMedCrossRefGoogle Scholar
  34. Wada T et al (2011) Both type I and II IFN induce insulin resistance by inducing different isoforms of SOCS expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 300:E1112–E1123. doi: 10.1152/ajpendo.00370.2010 PubMedCrossRefGoogle Scholar
  35. Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27:1487–1495PubMedCrossRefGoogle Scholar
  36. Watson GS, Craft S (2006) Insulin resistance, inflammation, and cognition in Alzheimer’s Disease: lessons for multiple sclerosis. J Neurol Sci 245:21–33. doi: 10.1016/j.jns.2005.08.017 PubMedCrossRefGoogle Scholar
  37. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V (2000) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148:209–214PubMedCrossRefGoogle Scholar
  38. Zeger M et al (2007) Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia 55:400–411. doi: 10.1002/glia.20469 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Adela Penesova
    • 1
    • 2
  • Miroslav Vlcek
    • 1
    • 2
  • Richard Imrich
    • 1
    • 2
  • Lucia Vernerova
    • 1
  • Andrea Marko
    • 1
  • Milada Meskova
    • 1
  • Lucia Grunnerova
    • 3
  • Peter Turcani
    • 3
  • Daniela Jezova
    • 1
  • Branislav Kollar
    • 3
    Email author
  1. 1.Institute of Experimental EndocrinologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Center for Molecular MedicineSlovak Academy of SciencesBratislavaSlovakia
  3. 3.First Department of Neurology, Faculty of MedicineComenius UniversityBratislavaSlovak Republic

Personalised recommendations