Metabolic Brain Disease

, Volume 29, Issue 4, pp 919–925 | Cite as

Elevated cerebral lactate: Implications in the pathogenesis of hepatic encephalopathy

  • Cristina R. BosoiEmail author
  • Christopher F. Rose
Research Article


Hepatic encephalopathy (HE), a complex neuropsychiatric syndrome, is a frequent complication of liver failure/disease. Increased concentrations of lactate are commonly observed in HE patients, in the systemic circulation, but also in the brain. Traditionally, increased cerebral lactate is considered a marker of energy failure/impairment however alterations in lactate homeostasis may also lead to a rise in brain lactate and result in neuronal dysfunction. The latter may involve the development of brain edema. This review will target the significance of increased cerebral lactate in the pathogenesis of HE.


Hepatic encephalopathy Lactate Brain edema Ammonia 



hepatic encephalopathy




lactate dehydrogenase


tricarboxylic acid cycle


astrocyte-neuron lactate shuttle


blood–brain barrier


monocarboxylate transporter


acute liver failure


chronic liver disease




  1. Abdelmalak M, Lew A, Ramezani R et al (2013) Long-term safety of dichloroacetate in congenital lactic acidosis. Mol Genet Metab 109:139–143. doi: 10.1016/j.ymgme.2013.03.019 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Amodio P, Biancardi A, Montagnese S et al (2007) Neurological complications after orthotopic liver transplantation. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver 39:740–747. doi: 10.1016/j.dld.2007.05.004 Google Scholar
  3. Atluri DK, Asgeri M, Mullen KD (2010) Reversibility of hepatic encephalopathy after liver transplantation. Metab Brain Dis 25:111–113. doi: 10.1007/s11011-010-9178-x PubMedCrossRefGoogle Scholar
  4. Bajaj JS, Saeian K, Verber MD et al (2007) Inhibitory control test is a simple method to diagnose minimal hepatic encephalopathy and predict development of overt hepatic encephalopathy. Am J Gastroenterol 102:754–760. doi: 10.1111/j.1572-0241.2007.01048.x PubMedCrossRefGoogle Scholar
  5. Baron J-C, Yamauchi H, Fujioka M, Endres M (2014) Selective neuronal loss in ischemic stroke and cerebrovascular disease. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 34:2–18. doi: 10.1038/jcbfm.2013.188 CrossRefGoogle Scholar
  6. Bélanger M, Yang J, Petit J-M et al (2011) Role of the glyoxalase system in astrocyte-mediated neuroprotection. J Neurosci Off J Soc Neurosci 31:18338–18352. doi: 10.1523/JNEUROSCI.1249-11.2011 CrossRefGoogle Scholar
  7. Bernal W, Donaldson N, Wyncoll D, Wendon J (2002) Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: a cohort study. Lancet 359:558–563. doi: 10.1016/S0140-6736(02)07743-7 PubMedCrossRefGoogle Scholar
  8. Bittar PG, Charnay Y, Pellerin L et al (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 16:1079–1089. doi: 10.1097/00004647-199611000-00001 CrossRefGoogle Scholar
  9. Bjerring PN, Hauerberg J, Frederiksen H-J et al (2008) Cerebral glutamine concentration and lactate-pyruvate ratio in patients with acute liver failure. Neurocrit Care 9:3–7. doi: 10.1007/s12028-008-9060-4 PubMedCrossRefGoogle Scholar
  10. Bjerring PN, Hauerberg J, Jørgensen L et al (2010) Brain hypoxanthine concentration correlates to lactate/pyruvate ratio but not intracranial pressure in patients with acute liver failure. J Hepatol 53:1054–1058. doi: 10.1016/j.jhep.2010.05.032 PubMedCrossRefGoogle Scholar
  11. Bo J, Li W, Chen Z et al (2013) D-lactate: a novel contributor to metabolic acidosis and high anion gap in diabetic ketoacidosis. Clin Chem 59:1406–1407. doi: 10.1373/clinchem.2013.208777 PubMedCrossRefGoogle Scholar
  12. Bosman DK, Deutz NE, De Graaf AA et al (1990) Changes in brain metabolism during hyperammonemia and acute liver failure: results of a comparative 1H-NMR spectroscopy and biochemical investigation. Hepatol Baltim Md 12:281–290CrossRefGoogle Scholar
  13. Bosoi CR, Rose CF (2013) Brain edema in acute liver failure and chronic liver disease: similarities and differences. Neurochem Int 62:446–457. doi: 10.1016/j.neuint.2013.01.015 PubMedCrossRefGoogle Scholar
  14. Bosoi CR, Yang X, Huynh J et al (2012) Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure. Free Radic Biol Med 52:1228–1235. doi: 10.1016/j.freeradbiomed.2012.01.006 PubMedCrossRefGoogle Scholar
  15. Bosoi CR, Zwingmann C, Marin H et al (2014) Increased brain lactate is central to the development of brain edema in rats with chronic liver disease. J Hepatol 60:554–560. doi: 10.1016/j.jhep.2013.10.011 PubMedCrossRefGoogle Scholar
  16. Butterworth RF (2007) Neuronal cell death in hepatic encephalopathy. Metab Brain Dis 22:309–320. doi: 10.1007/s11011-007-9072-3 PubMedCrossRefGoogle Scholar
  17. Butterworth RF, Kril JJ, Harper CG (1993) Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome. Alcohol Clin Exp Res 17:1084–1088PubMedCrossRefGoogle Scholar
  18. Calvert LD, Shelley R, Singh SJ et al (2008) Dichloroacetate enhances performance and reduces blood lactate during maximal cycle exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177:1090–1094. doi: 10.1164/rccm.200707-1032OC PubMedCrossRefGoogle Scholar
  19. Cauli O, López-Larrubia P, Rodrigo R et al (2011) Brain region-selective mechanisms contribute to the progression of cerebral alterations in acute liver failure in rats. Gastroenterology 140:638–645. doi: 10.1053/j.gastro.2010.10.043 PubMedCrossRefGoogle Scholar
  20. Chatauret N, Zwingmann C, Rose C et al (2003) Effects of hypothermia on brain glucose metabolism in acute liver failure: a H/C-nuclear magnetic resonance study. Gastroenterology 125:815–824PubMedCrossRefGoogle Scholar
  21. Chavarria L, Oria M, Romero-Gimenez J et al (2010) Diffusion tensor imaging supports the cytotoxic origin of brain edema in a rat model of acute liver failure. Gastroenterology 138:1566–1573. doi: 10.1053/j.gastro.2009.10.003 PubMedCrossRefGoogle Scholar
  22. Chen F, Ohashi N, Li W et al (2009) Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure. Hepatol Baltim Md 50:1914–1923. doi: 10.1002/hep.23203 CrossRefGoogle Scholar
  23. Ciancio A, Marchet A, Saracco G et al (2002) Spectral electroencephalogram analysis in hepatic encephalopathy and liver transplantation. Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc 8:630–635. doi: 10.1053/jlts.2002.33971 Google Scholar
  24. Clemmesen JO, Høy CE, Kondrup J, Ott P (2000) Splanchnic metabolism of fuel substrates in acute liver failure. J Hepatol 33:941–948PubMedCrossRefGoogle Scholar
  25. Fitzpatrick SM, Hetherington HP, Behar KL, Shulman RG (1989) Effects of acute hyperammonemia on cerebral amino acid metabolism and pHi in vivo, measured by 1H and 31P nuclear magnetic resonance. J Neurochem 52:741–749PubMedCrossRefGoogle Scholar
  26. Gorman AM (2008) Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. J Cell Mol Med 12:2263–2280. doi: 10.1111/j.1582-4934.2008.00402.x PubMedCrossRefGoogle Scholar
  27. Hartmann IJ, Groeneweg M, Quero JC et al (2000) The prognostic significance of subclinical hepatic encephalopathy. Am J Gastroenterol 95:2029–2034. doi: 10.1111/j.1572-0241.2000.02265.x PubMedCrossRefGoogle Scholar
  28. Hertz L, Dienel GA (2002) Energy metabolism in the brain. Int Rev Neurobiol 51:1–102PubMedCrossRefGoogle Scholar
  29. Hindfelt B, Plum F, Duffy TE (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest 59:386–396. doi: 10.1172/JCI108651 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Jeppesen JB, Mortensen C, Bendtsen F, Møller S (2013) Lactate metabolism in chronic liver disease. Scand J Clin Lab Invest. doi: 10.3109/00365513.2013.773591 PubMedGoogle Scholar
  31. Kaila K, Ransom BR (1998) pH and brain function. Wiley-Liss, New YorkGoogle Scholar
  32. Kim WR, Brown RS Jr, Terrault NA, El-Serag H (2002) Burden of liver disease in the United States: summary of a workshop. Hepatol Baltim Md 36:227–242. doi: 10.1053/jhep.2002.34734 CrossRefGoogle Scholar
  33. Krautwald M, Münch G (2010) Advanced glycation end products as biomarkers and gerontotoxins - a basis to explore methylglyoxal-lowering agents for Alzheimer’s disease? Exp Gerontol 45:744–751. doi: 10.1016/j.exger.2010.03.001 PubMedCrossRefGoogle Scholar
  34. Kumar A, Kant S, Singh SM (2013) Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: a role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation. Toxicol Appl Pharmacol 273:196–208. doi: 10.1016/j.taap.2013.09.005 PubMedCrossRefGoogle Scholar
  35. Lai JC, Cooper AJ (1986) Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 47:1376–1386PubMedCrossRefGoogle Scholar
  36. Languren G, Montiel T, Julio-Amilpas A, Massieu L (2013) Neuronal damage and cognitive impairment associated with hypoglycemia: an integrated view. Neurochem Int 63:331–343. doi: 10.1016/j.neuint.2013.06.018 PubMedCrossRefGoogle Scholar
  37. Lee WM (1993) Acute liver failure. N Engl J Med 329:1862–1872. doi: 10.1056/NEJM199312163292508 PubMedCrossRefGoogle Scholar
  38. Levraut J, Ciebiera JP, Chave S et al (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 157:1021–1026. doi: 10.1164/ajrccm.157.4.9705037 PubMedCrossRefGoogle Scholar
  39. Lin S, Raabe W (1985) Ammonia intoxication: effects on cerebral cortex and spinal cord. J Neurochem 44:1252–1258PubMedCrossRefGoogle Scholar
  40. Lowry OH, Passonneau JV (1966) Kinetic evidence for multiple binding sites on phosphofructokinase. J Biol Chem 241:2268–2279PubMedGoogle Scholar
  41. Mans AM, DeJoseph MR, Hawkins RA (1994) Metabolic abnormalities and grade of encephalopathy in acute hepatic failure. J Neurochem 63:1829–1838PubMedCrossRefGoogle Scholar
  42. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 32:1152–1166. doi: 10.1038/jcbfm.2011.149 CrossRefGoogle Scholar
  43. Pellerin L, Bouzier-Sore A-K, Aubert A et al (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262. doi: 10.1002/glia.20528 PubMedCrossRefGoogle Scholar
  44. Perazzo JC (2012) Hepatic encephalopathy: an approach to its multiple pathophysiological features. World J Hepatol 4:50. doi: 10.4254/wjh.v4.i3.50 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14. doi: 10.1111/j.1471-4159.2005.03168.x PubMedCrossRefGoogle Scholar
  46. Preuss M (2012) An energy-failure based brain edema concept. Med Hypotheses 79:259–260. doi: 10.1016/j.mehy.2012.05.003 PubMedCrossRefGoogle Scholar
  47. Rose C (2012) Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clin Pharmacol Ther 92(3):321–31. doi: 10.1038/clpt.2012.112 PubMedCrossRefGoogle Scholar
  48. Rose C, Kresse W, Kettenmann H (2005) Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. J Biol Chem 3(280(22)):20937–44CrossRefGoogle Scholar
  49. Rose C, Ytrebø LM, Davies NA et al (2007) Association of reduced extracellular brain ammonia, lactate, and intracranial pressure in pigs with acute liver failure. Hepatol Baltim Md 46:1883–1892. doi: 10.1002/hep.21877 CrossRefGoogle Scholar
  50. Sawara K, Desjardins P, Chatauret N et al (2009) Alterations in expression of genes coding for proteins of the neurovascular unit in ischemic liver failure. Neurochem Int 55:119–123. doi: 10.1016/j.neuint.2009.01.023 PubMedCrossRefGoogle Scholar
  51. Schurr A (2006) Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 26:142–152. doi: 10.1038/sj.jcbfm.9600174 CrossRefGoogle Scholar
  52. Sen S, Rose C, Ytrebø LM et al (2006) Effect of albumin dialysis on intracranial pressure increase in pigs with acute liver failure: a randomized study. Crit Care Med 34:158–164PubMedCrossRefGoogle Scholar
  53. Shih MT, Singh AK, Wang A-M, Patel S (2004) Brain lesions with elevated lactic acid peaks on magnetic resonance spectroscopy. Curr Probl Diagn Radiol 33:85–95. doi: 10.1016/j.cpradiol.2003.11.002 PubMedCrossRefGoogle Scholar
  54. Sotil EU, Gottstein J, Ayala E et al (2009) Impact of preoperative overt hepatic encephalopathy on neurocognitive function after liver transplantation. Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc 15:184–192. doi: 10.1002/lt.21593 Google Scholar
  55. Stacpoole PW, Henderson GN, Yan Z, James MO (1998) Clinical pharmacology and toxicology of dichloroacetate. Environ Health Perspect 106(4):989–994PubMedCentralPubMedCrossRefGoogle Scholar
  56. Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–208PubMedCrossRefGoogle Scholar
  57. Staub F, Baethmann A, Peters J et al (1990) Effects of lactacidosis on glial cell volume and viability. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 10:866–876CrossRefGoogle Scholar
  58. Tas A, Akbal E, Beyazit Y, Kocak E (2012) Serum lactate level predict mortality in elderly patients with cirrhosis. Wien Klin Wochenschr 124:520–525. doi: 10.1007/s00508-012-0208-z PubMedCrossRefGoogle Scholar
  59. Therrien G, Rose C, Butterworth J, Butterworth RF (1997) Protective effect of L-carnitine in ammonia-precipitated encephalopathy in the portacaval shunted rat. Hepatol Baltim Md 25:551–556. doi: 10.1002/hep.510250310 CrossRefGoogle Scholar
  60. Tofteng F, Jorgensen L, Hansen BA et al (2002) Cerebral microdialysis in patients with fulminant hepatic failure. Hepatol Baltim Md 36:1333–1340. doi: 10.1053/jhep.2002.36944 CrossRefGoogle Scholar
  61. Vogels BA, Karlsen OT, Mass MA et al (1997) L-ornithine vs. L-ornithine-L-aspartate as a treatment for hyperammonemia-induced encephalopathy in rats. J Hepatol 26:174–182PubMedCrossRefGoogle Scholar
  62. Woll PJ, Record CO (1979) Lactate elimination in man: effects of lactate concentration and hepatic dysfunction. Eur J Clin Invest 9:397–404PubMedCrossRefGoogle Scholar
  63. Wright G, Davies NA, Shawcross DL et al (2007) Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatol Baltim Md 45:1517–1526. doi: 10.1002/hep.21599 CrossRefGoogle Scholar
  64. Yamamoto S, Nguyen JH (2006) TIMP-1/MMP-9 imbalance in brain edema in rats with fulminant hepatic failure. J Surg Res 134:307–314. doi: 10.1016/j.jss.2005.11.588 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Yao H, Sadoshima S, Fujii K et al (1987) Cerebrospinal fluid lactate in patients with hepatic encephalopathy. Eur Neurol 27:182–187PubMedCrossRefGoogle Scholar
  66. Zauner C, Schneeweiss B, Schneider B et al (2000) Short-term prognosis in critically ill patients with liver cirrhosis: an evaluation of a new scoring system. Eur J Gastroenterol Hepatol 12:517–522PubMedCrossRefGoogle Scholar
  67. Zosel A, Egelhoff E, Heard K (2010) Severe lactic acidosis after an iatrogenic propylene glycol overdose. Pharmacotherapy 30:219. doi: 10.1592/phco.30.2.219 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Zwingmann C (2007) Nuclear magnetic resonance studies of energy metabolism and glutamine shunt in hepatic encephalopathy and hyperammonemia. J Neurosci Res 85:3429–3442. doi: 10.1002/jnr.21445 PubMedCrossRefGoogle Scholar
  69. Zwingmann C, Chatauret N, Leibfritz D, Butterworth RF (2003) Selective increase of brain lactate synthesis in experimental acute liver failure: results of a [H-C] nuclear magnetic resonance study. Hepatol Baltim Md 37:420–428. doi: 10.1053/jhep.2003.50052 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Hepato-Neuro LaboratoryCentre Hospitalier de l’Université de Montréal (CRCHUM)QuébecCanada

Personalised recommendations