Metabolic Brain Disease

, Volume 29, Issue 3, pp 729–736

mTOR-mediated hyperphosphorylation of tau in the hippocampus is involved in cognitive deficits in streptozotocin-induced diabetic mice

  • Shan Wang
  • Shan-lei Zhou
  • Fang-yuan Min
  • Jin-ju Ma
  • Xia-jie Shi
  • Erika Bereczki
  • Jing Wu
Research Article


Abnormal levels of mammalian target of rapamycin (mTOR) signaling have been recently implicated in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease (AD). However, the implication of mTOR in diabetes mellitus (DM)-related cognitive dysfunction still remains unknown. In the present study, we found that phosphorylated mTOR at Ser2448, phosphorylated p70S6K at Thr421/Ser424 and phosphorylated tau at Ser396 were significantly increased in the hippocampus of streptozotocin (STZ)-induced diabetic mice when compared with control mice. A low dose of rapamycin was used to elucidate the role of mTOR signaling in DM-related cognitive deficit. Rapamycin restored abnormal mTOR/p70S6K signaling and attenuated the phosphorylation of tau protein in the hippocampus of diabetic mice. Furthermore, the spatial learning and memory function of diabetic mice significantly impaired compared with control mice, was also reversed by rapamycin. These findings indicate that mTOR/p70S6K signaling pathway is hyperactive in the hippocampus of STZ-induced diabetic mice and inhibiting mTOR signaling with rapamycin prevents the DM-related cognitive deficits partly through attenuating the hyperphosphorylation of tau protein.


mTOR Cognitive deficit Diabetic Rapamycin Tau 


  1. Alvarez EO, Beauquis J, Revsin Y, Banzan AM, Roig P, De Nicola AF, Saravia F (2009) Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes. Behav Brain Res 198:224–230PubMedCrossRefGoogle Scholar
  2. An WL, Cowburn RF, Li L, Braak H, Alafuzoff I, Iqbal K, Iqbal IG, Winblad B, Pei JJ (2003) Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer’s disease. Am J Pathol 163:591–607PubMedCentralPubMedCrossRefGoogle Scholar
  3. Barlow AD, Nicholson ML, Herbert TP (2013) Evidence for rapamycin toxicity in pancreatic beta-cells and a review of the underlying molecular mechanisms. Diabetes 62:2674–2682PubMedCentralPubMedCrossRefGoogle Scholar
  4. Beauquis J, Roig P, De Nicola AF, Saravia F (2009) Neuronal plasticity and antidepressants in the diabetic brain. Ann N Y Acad Sci 1153:203–208PubMedCrossRefGoogle Scholar
  5. Beauquis J, Roig P, De Nicola AF, Saravia F (2010) Short-term environmental enrichment enhances adult neurogenesis, vascular network and dendritic complexity in the hippocampus of type 1 diabetic mice. PLoS One 5:e13993PubMedCentralPubMedCrossRefGoogle Scholar
  6. Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45:1259–1266PubMedCrossRefGoogle Scholar
  7. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285:13107–13120PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen Y, Cao CP, Li CR, Wang W, Zhang D, Han LL, Zhang XQ, Kim A, Kim S, Liu GL (2010) Ghrelin modulates insulin sensitivity and tau phosphorylation in high glucose-induced hippocampal neurons. Biol Pharm Bull 33:1165–1169PubMedCrossRefGoogle Scholar
  9. Chiang GG, Abraham RT (2005) Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem 280:25485–25490PubMedCrossRefGoogle Scholar
  10. Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS (2006) Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55:3320–3325PubMedCentralPubMedCrossRefGoogle Scholar
  11. Dann SG, Selvaraj A, Thomas G (2007) mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13:252–259PubMedCrossRefGoogle Scholar
  12. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14:843–848PubMedCentralPubMedCrossRefGoogle Scholar
  13. Halloran J, Hussong SA, Burbank R, Podlutskaya N, Fischer KE, Sloane LB, Austad SN, Strong R, Richardson A, Hart MJ, Galvan V (2012) Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience 223:102–113PubMedCentralPubMedCrossRefGoogle Scholar
  14. Huang HJ, Chen YH, Liang KC, Jheng YS, Jhao JJ, Su MT, Lee-Chen GJ, Hsieh-Li HM (2012) Exendin-4 protected against cognitive dysfunction in hyperglycemic mice receiving an intrahippocampal lipopolysaccharide injection. PLoS One 7:e39656PubMedCentralPubMedCrossRefGoogle Scholar
  15. Inoki K (2008) Role of TSC-mTOR pathway in diabetic nephropathy. Diabetes Res Clin Pract 82:S59–S62PubMedCrossRefGoogle Scholar
  16. Jacot JL, Sherris D (2011) Potential therapeutic roles for inhibition of the pi3k/akt/mtor pathway in the pathophysiology of diabetic retinopathy. J Ophthalmol 2011:589813PubMedCentralPubMedGoogle Scholar
  17. Jaworski T, Dewachter I, Lechat B, Croes S, Termont A, Demedts D, Borghgraef P, Devijver H, Filipkowski RK, Kaczmarek L, Kugler S, Van Leuven F (2009) AAV-tau mediates pyramidal neurodegeneration by cell-cycle re-entry without neurofibrillary tangle formation in wild-type mice. PLoS One 4:e7280PubMedCentralPubMedCrossRefGoogle Scholar
  18. Jung HJ, Kim YJ, Eggert S, Chung KC, Choi KS, Park SA (2013) Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62. Exp Neurol 248C:441–450CrossRefGoogle Scholar
  19. Li X, Alafuzoff I, Soininen H, Winblad B, Pei JJ (2005) Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J 272:4211–4220PubMedCrossRefGoogle Scholar
  20. Li ZG, Zhang W, Sima AA (2007) Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56:1817–1824PubMedCrossRefGoogle Scholar
  21. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer’s disease. J Neurochem 111:242–249PubMedCentralPubMedCrossRefGoogle Scholar
  22. Liu G, Han F, Yang Y, Xie Y, Jiang H, Mao Y, Wang H, Wang M, Chen R, Yang J, Chen J (2011a) Evaluation of sphingolipid metabolism in renal cortex of rats with streptozotocin-induced diabetes and the effects of rapamycin. Nephrol Dial Transplant 26:1493–1502PubMedCrossRefGoogle Scholar
  23. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011b) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225:54–62PubMedCrossRefGoogle Scholar
  24. Mori H, Inoki K, Masutani K, Wakabayashi Y, Komai K, Nakagawa R, Guan KL, Yoshimura A (2009) The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun 384:471–475PubMedCrossRefGoogle Scholar
  25. Pei JJ, Hugon J (2008) mTOR-dependent signalling in Alzheimer’s disease. J Cell Mol Med 12:2525–2532PubMedCrossRefGoogle Scholar
  26. Pei JJ, An WL, Zhou XW, Nishimura T, Norberg J, Benedikz E, Gotz J, Winblad B (2006) P70 S6 kinase mediates tau phosphorylation and synthesis. FEBS Lett 580:107–114PubMedCrossRefGoogle Scholar
  27. Planel E, Tatebayashi Y, Miyasaka T, Liu L, Wang L, Herman M, Yu WH, Luchsinger JA, Wadzinski B, Duff KE, Takashima A (2007) Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci 27:13635–13648PubMedCrossRefGoogle Scholar
  28. Qu Z, Jiao Z, Sun X, Zhao Y, Ren J, Xu G (2011) Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res 1383:300–306PubMedCrossRefGoogle Scholar
  29. Ryan CM, Williams TM (1993) Effects of insulin-dependent diabetes on learning and memory efficiency in adults. J Clin Exp Neuropsychol 15:685–700PubMedCrossRefGoogle Scholar
  30. Schindowski K, Bretteville A, Leroy K, Begard S, Brion JP, Hamdane M, Buee L (2006) Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 169:599–616PubMedCentralPubMedCrossRefGoogle Scholar
  31. Stoppelkamp S, Bell HS, Palacios-Filardo J, Shewan DA, Riedel G, Platt B (2011) In vitro modelling of Alzheimer’s disease: degeneration and cell death induced by viral delivery of amyloid and tau. Exp Neurol 229:226–237PubMedCrossRefGoogle Scholar
  32. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP (2008) Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11:309–317PubMedCentralPubMedCrossRefGoogle Scholar
  33. Swiech L, Perycz M, Malik A, Jaworski J (2008) Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta 1784:116–132PubMedCrossRefGoogle Scholar
  34. Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM (2002) A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci U S A 99:467–472PubMedCentralPubMedCrossRefGoogle Scholar
  35. Tang Z, Bereczki E, Zhang H, Wang S, Li C, Ji X, Branca RM, Lehtio J, Guan Z, Filipcik P, Xu S, Winblad B, Pei JJ (2013) Mammalian target of rapamycin (mTor) mediates tau protein dyshomeostasis: implication for Alzheimer disease. J Biol Chem 288:15556–15570PubMedCentralPubMedCrossRefGoogle Scholar
  36. Tesch GH, Allen TJ (2007) Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology (Carlton) 12:261–266CrossRefGoogle Scholar
  37. Thomas J, Garg ML, Smith DW (2013) Altered expression of histone and synaptic plasticity associated genes in the hippocampus of streptozotocin-induced diabetic mice. Metab Brain DisGoogle Scholar
  38. Van der Jeugd A, Ahmed T, Burnouf S, Belarbi K, Hamdame M, Grosjean ME, Humez S, Balschun D, Blum D, Buee L, D’Hooge R (2011) Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic transmission. Neurobiol Learn Mem 95:296–304PubMedCrossRefGoogle Scholar
  39. Wang S, Toth ME, Bereczki E, Santha M, Guan ZZ, Winblad B, Pei JJ (2011) Interplay between glycogen synthase kinase-3beta and tau in the cerebellum of Hsp27 transgenic mouse. J Neurosci Res 89:1267–1275PubMedCrossRefGoogle Scholar
  40. Zhang WJ, Tan YF, Yue JT, Vranic M, Wojtowicz JM (2008) Impairment of hippocampal neurogenesis in streptozotocin-treated diabetic rats. Acta Neurol Scand 117:205–210PubMedCrossRefGoogle Scholar
  41. Zhao YM, Pei JJ, Ji ZJ, Zhao ZW, Qian YY, Sheng SL (2003) Effect of amyloid precursor protein 17mer peptide on microtubule structure and tau protein hyperphosphorylation in hippocampal neurons of experimental diabetic mice. Neuroreport 14:61–66PubMedCrossRefGoogle Scholar
  42. Zick Y (2005) Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005: pe4Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shan Wang
    • 2
  • Shan-lei Zhou
    • 1
  • Fang-yuan Min
    • 2
  • Jin-ju Ma
    • 1
  • Xia-jie Shi
    • 1
  • Erika Bereczki
    • 3
  • Jing Wu
    • 1
  1. 1.Department of Endocrinology, Xiang-Ya HospitalCentral South UniversityChangshaChina
  2. 2.Department of Pharmaceutical Engineering, College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  3. 3.Department of Neurobiology, Care Sciences and SocietyKI-Alzheimer’s Disease Research CenterKarolinska InstitutetNovumSweden

Personalised recommendations