Metabolic Brain Disease

, Volume 29, Issue 3, pp 553–561 | Cite as

Brain metabolite clearance: impact on Alzheimer’s disease

  • Juan M. Zolezzi
  • Nibaldo C. InestrosaEmail author
Review Article


Alzheimer’s Disease (AD) is a complex neurodegenerative disorder often associated with aging and characterized by several critical molecular changes that take place in the brain. Among the molecular hallmarks of AD, increased levels of amyloid β-peptide (Aβ) and the subsequent Aβ-derived damage are the most well-studied factors; however, despite the large amounts of effort and resources devoted to the study of AD and AD pathophysiology, the scientific community still awaits therapeutic alternatives capable of ensuring a better outcome for AD patients. In 2012, Cramer et al. (Science 335:1503-1506 2012) astonished the scientific community by rescuing behavioral and cognitive impairments in AD mouse models via oral administration of bexarotene, a drug used to treat some types of skin cancer. Moreover, these authors demonstrated that bexarotene, a retinoid X receptor (RXR) agonist, exerts major effects on Aβ levels, mainly through increased apolipoprotein E (ApoE) expression. Apart from the valid questions addressed in Cramer’s work, only a few attempts have been made to explain the effects of bexarotene. Most of these explanations have been solely based on the ability of bexarotene to reduce Aβ levels and not on the mechanisms that lead to such a reduction. Although it is well known that an imbalance in the Aβ production/excretion rate is the basis of increased Aβ levels in AD, no further explanations have been proposed to address the potential involvement of the blood-brain barrier (BBB), a critical Aβ-clearance structure, in the bexarotene-mediated effects. Moreover, no attempt has been made to explain how the different effects observed after bexarotene administration are connected to each other. Based on current information and on our own experience with nuclear receptors (NR), we offer new perspectives on the mechanisms of bexarotene action, which should help to improve our knowledge of NRs.


Blood-brain barrier Aβ brain balance Oxidative stress Neurodegeneration PPARs 



We thank Dr. Waldo Cerpa for helpful discussions regarding this manuscript.

This work was supported by FONDECYT N° 11130033 (to JMZ) and the Basal Center of Excellence in Science and Technology (PFB 12/2007) from CONICYT and SQM, the MIFAB Institute and Fundación Ciencia y Vida (to NCI).

Graphic work was performed by Graphique-Science (

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Abramov AY, Canevari L, Duchen MR (2004) β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24:565–575PubMedCrossRefGoogle Scholar
  2. Alzheimer’s Association (2012) Alzheimer’s disease facts and figures. Alzheimers Dement 8:131–168CrossRefGoogle Scholar
  3. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031. doi: 10.1016/S0140-6736(10)61349-9 PubMedCrossRefGoogle Scholar
  4. Barroso E, del Valle J, Porquet D et al (2013) Tau hyperphosphorylation and increased BACE1 and RAGE levels in the cortex of PPARβ/δ-null mice. Biochim Biophys Acta 1832:1241–1248PubMedCrossRefGoogle Scholar
  5. Bhel C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827CrossRefGoogle Scholar
  6. Carvajal FJ, Inestrosa NC (2011) Interaction of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci 4:19PubMedCentralPubMedCrossRefGoogle Scholar
  7. Caspersen C, Wang N, Yao J et al (2005) Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041PubMedGoogle Scholar
  8. Cavalluci V, D’Amelio M, Cecconi F (2012) Aβ toxicity in Alzheimer’s disease. Mol Neurobiol 45:366–378CrossRefGoogle Scholar
  9. Chawla A, Boisvert WA, Lee CH et al (2001) A PPAR gamma-LRX-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7:161–171PubMedCrossRefGoogle Scholar
  10. Chen YC, Wu JS, Tsai HD, Huang CY, Chen JJ, Sun GY, Lin TN (2012) Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders. Mol Neurobiol. doi: 10.1007/s12035-012-8259-8 Google Scholar
  11. Cho DH, Lee EJ, Kwon KJ, Shin CY, Song KH, Park JH, Han SH (2013) Troglitazone, a thiazolidinedione, decreases tau phosphorylation through the inhibition of cyclin-dependent kinase 5 activity in SH-SY5Y neuroblastoma cells and primary neurons. J Neurochem 126:685–695PubMedCrossRefGoogle Scholar
  12. Cramer PE, Cirrito JR, Wesson DW et al (2012) ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335:1503–1506PubMedCentralPubMedCrossRefGoogle Scholar
  13. Crunkhorn S (2012) Neurodegenerative disease: RXR agonist reverses Alzheimer’s disease. Nat Rev Drug Discov 11:271. doi: 10.1038/nrd3706 PubMedCrossRefGoogle Scholar
  14. Dawson MI, Xia Z (2012) The retinoid X receptor and their ligands. Biochim Biophys Acta 1821:21–56PubMedCentralPubMedCrossRefGoogle Scholar
  15. Deane R, Singh I, Sagare AP, Bell RD et al (2012) A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 122:1377–1392PubMedCentralPubMedCrossRefGoogle Scholar
  16. Drosatos K, Khan RS, Trent CM, Jiang H, Son NH, Blaner WS, Homma S, Schulze PC, Goldberg IJ (2013) Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail 6:550–562PubMedCentralPubMedCrossRefGoogle Scholar
  17. Dumont M, Stack C, Elipenahli C et al (2012) Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Hum Mol Genet 21:5091–5105PubMedCentralPubMedCrossRefGoogle Scholar
  18. Eisai Manufacturing Ltd (EML), Targretin information; Accessed 17 Jun 2013
  19. Fantini J, Di Scala C, Yahi N, Troadec JD, Sadelli K, Chahinian H, Garmy N (2014) Bexarotene blocks calcium-permeable ion channels formed by neurotoxic Alzheimer’s β-amyloid peptides. ACS Chem Neurosci. doi: 10.1021/cn400183w PubMedGoogle Scholar
  20. FDA, Drug approval package, Tagretin; Accessed 17 Jun 2013
  21. Fitz NF, Cronican AA, Lefterov I, Koldamova R (2013) Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 340:924. doi: 10.1126/science.1235809 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Fuentealba RA, Farias G, Scheu J, Bronfman M, Marzolo MP, Inestrosa NC (2004) Signal transduction during amyloid-β-peptide neurotoxicity: role in Alzheimer disease. Brain Res Brain Res Rev 47:275–289PubMedCrossRefGoogle Scholar
  23. Fuenzalida K, Quintanilla R, Ramos P et al (2007) Peroxisome proliferator-activated receptor γ up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J Biol Chem 282:37006–37015PubMedCrossRefGoogle Scholar
  24. Gonzales FJ, Shah YM (2007) PPARα: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology 246:2–8CrossRefGoogle Scholar
  25. Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3:950–964PubMedCrossRefGoogle Scholar
  26. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112PubMedCrossRefGoogle Scholar
  27. Haemmerle G, Moustafa T, Woelkart G et al (2011) ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1α. Nat Med 17:1076–1085PubMedCentralPubMedCrossRefGoogle Scholar
  28. Harman FS, Nicol CJ, Marin HE, Ward JM, Gonzales FJ, Peters JM (2004) Peroxisome proliferator-activated receptor-delta attenuates colon carcinogenesis. Nat Med 10:481–483PubMedCrossRefGoogle Scholar
  29. Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771:1031–1045PubMedCrossRefGoogle Scholar
  30. Hollingshead HE, Killins RL, Borland MG, Girroir EE, Billin AN, Willson TM, Sharma AK, Amin S, Gonzales FJ, Peters JM (2007) Peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands do not potentiate growth of human cancer cell lines. Carcinogenesis 28:2641–2649PubMedCrossRefGoogle Scholar
  31. Hondares E, Rosell M, Díaz-Delfin J et al (2011) Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem 286:43112–43122PubMedCentralPubMedCrossRefGoogle Scholar
  32. Hoque MT, Robillard KR, Bendayan R (2012) Regulation of breast cancer resistant protein by peroxisome proliferator-activated receptor α in human brain microvessel endothelial cells. Mol Pharmacol 81:598–609PubMedCrossRefGoogle Scholar
  33. HUGO Gene Nomenclature Committee (HGNC) at, accessed 20 Jan 2014
  34. Iadecola C (2013) The pathobiology of vascular dementia. Neurology. doi: 10.1016/j.neuron.2013.10.008 Google Scholar
  35. Inestrosa NC, Toledo EM (2008) The role of Wnt signaling in neuronal dysfunction in Alzheimer’s disease. MolNeurodegener 3:9PubMedCentralPubMedCrossRefGoogle Scholar
  36. Inestrosa NC, Godoy JA, Quintanilla RA, Koenig CS, Bronfman M (2005) Peroxisome proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 304:91–104PubMedCrossRefGoogle Scholar
  37. Kalinin S, Richardson JC, Feinstein DL (2009) A PPARdelta agonist reduces amyloid burden and brain inflammation in a transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res 6:431–437PubMedCrossRefGoogle Scholar
  38. Kaneyiko T, Cirrito JR, Liu CC, Shinohara M (2013) Neuronal clearance of Amyloid-β by endocytic receptor LRP1. J Neurosci 33:19276–19283. doi: 10.1523/JNEUROSCI.3487-13.2013 CrossRefGoogle Scholar
  39. Kang J, Rivest S (2012) Lipid metabolism and neuroinflammation in Alzheimer’s disease: a role for liver X receptors. Endocr Rev 33:715–746PubMedCrossRefGoogle Scholar
  40. Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I (2012) Aβ1-42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling. J Neurosci 32:8845–8854PubMedCrossRefGoogle Scholar
  41. LaClair KD, Manaye KF, Lee DL et al (2013) Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Mol Neurodegener 8:18PubMedCentralPubMedCrossRefGoogle Scholar
  42. LaFerla FM (2012) Preclinical success against Alzheimer’s disease with an old drug. N Engl J Med 367:570–574PubMedCrossRefGoogle Scholar
  43. Landreth GE, Cramer PE, Lakner MM et al (2013) Response to comments on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 340:924. doi: 10.1126/science.1234114 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Langbaum JB, Fleisher AS, Chen K et al (2013) Ushering in the study and treatment of preclinical Alzheimer disease. Nat Rev Neurol. doi: 10.1038/nrneurol.2013.107 PubMedCentralPubMedGoogle Scholar
  45. Lee HP, Zhu X, Casadesus G et al (2010) Antioxidant approaches for the treatment of Alzheimer’s disease. Expert Rev Neurother 10:1201–1208PubMedCrossRefGoogle Scholar
  46. Lesné SE, Sherman MA, Grant M et al (2013) Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain 136:1383–1398PubMedCentralPubMedCrossRefGoogle Scholar
  47. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449PubMedCrossRefGoogle Scholar
  48. Mangelsdorf DJ, Borgmeyer U, Heyman RA et al (1992) Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6:329–344PubMedCrossRefGoogle Scholar
  49. Manji H, Kato T, Di Prospero NA et al (2012) Impaired mitochondrial function in psychiatric disorders. Nature Rev Neurosci 13:293–307Google Scholar
  50. Martín A, Pérez-Girón JV, Hernanz R, Palacios R, Briones AM, Fortuño A, Zalba G, Salaices M, Alonso MJ (2012) Peroxisome proliferator-activated receptor-γ activation reduces cyclooxygenase-2 expression in vascular smooth muscle cells from hypertensive rats by interfering with oxidative stress. J Hypertens 30:315–326PubMedCrossRefGoogle Scholar
  51. Meyer-Luehmann M, Spires-Jones TL, Prada C et al (2008) Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724PubMedCentralPubMedCrossRefGoogle Scholar
  52. Miranda S, Opazo C, Larrondo LF et al (2000) The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer’s disease. Prog Neurobiol 62:633–648PubMedCrossRefGoogle Scholar
  53. Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC (2005) Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev 26:898–915PubMedCrossRefGoogle Scholar
  54. Muzio G, Maggiora M, Oraldi M, Trombetta A, Canuto RA (2007) PPARalpha and PP2A are involved in the proapoptotic effect of conjugated linoleic acid on human hepatoma cell line SK-HEP-1. Int J Cancer 121:2395–2401PubMedCrossRefGoogle Scholar
  55. Mysiorek C, Culot M, Dehouck L, Derudas B, Bordet R, Cecchelli R, Fenart L, Berezowski V (2009) Peroxisome-proliferator-activated receptor-alpha activation protects brain capillary endothelial cells from oxygen-glucose deprivation-induced hyperpermeability in the blood-brain barrier. Curr Neurovasc Res 6:181–193PubMedCrossRefGoogle Scholar
  56. Neher MD, Weckbach S, Huber-Lang MS, Stahel PF (2012) New insights into the role of peroxisome proliferator-activated receptors in regulating the inflammatory response after tissue injury. PPAR Res. doi: 10.1155/2012/728461 PubMedCentralPubMedGoogle Scholar
  57. O’Donnell ME, Lam TI, Tran LQ (2006) Estradiol reduces activity of the blood-brain barrier Na-K-Cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 26:1234–1249PubMedCrossRefGoogle Scholar
  58. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596. doi: 10.1038/nm.3407 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Olefsky JM (2001) Nuclear receptor minireview series. J Biol Chem 276:36863–36864PubMedCrossRefGoogle Scholar
  60. Paula-Lima AC, Adasme T, SanMartín C et al (2011) Amyloid β-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF. Antioxid Redox Signal 14:1209–1223PubMedCrossRefGoogle Scholar
  61. Perl DP (2010) Neuropathology of Alzheimer's disease. Mt Sinai J Med 77:32–42PubMedCentralPubMedCrossRefGoogle Scholar
  62. Philipson CW, Bassaganya-Riera J, Viladomiu M, Pedragosa M, Guerrant RL, Roche JK, Hontecillas R (2013) The role of peroxisome proliferator-activated receptor γ in immune responses to enteroaggregative Escherichia coli infection. PLoS One 8:e57812PubMedCentralPubMedCrossRefGoogle Scholar
  63. Polvani S, Tarocchi M, Galli A (2012) PPARγ and oxidative stress: Con(β) catenating NRF2 and FOXO. PPAR Res. doi: 10.1155/2012/641087 PubMedCentralPubMedGoogle Scholar
  64. Price AR, Xu G, Siemienski ZB et al (2013) Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 340:924. doi: 10.1126/science.1234089 PubMedCrossRefGoogle Scholar
  65. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–44PubMedCrossRefGoogle Scholar
  66. Quintanilla RA, Godoy JA, Alfaro I, Cabezas D, von Bernhardi R, Bronfman M, Inestrosa NC (2013) Thiazolidinediones promote axonal growth through the activation of the JNK pathway. PLoS One 8(5):e65140. doi: 10.1371/journal.pone.0065140 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Reddy OH, Beal MF (2008) Amyloid β, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53PubMedCentralPubMedCrossRefGoogle Scholar
  68. Salmon DP, Bondi MW (2009) Neuropsychological assessment of dementia. Annu Rev Psychol 60:257–282PubMedCentralPubMedCrossRefGoogle Scholar
  69. Santos MJ, Quintanilla RA, Toro A, Grandy R, Dinamarca MC, Godoy JA, Inestrosa NC (2005) Peroxisomal proliferation protects from beta-amyloid neurodegeneration. J Biol Chem 280:41057–41068PubMedCrossRefGoogle Scholar
  70. Selkoe DJ (2001) Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 3:75–80PubMedGoogle Scholar
  71. Selkoe DJ (2011) Resolving controversies on the path to Alzheimer’s therapeuthics. Nat Med 17:1060–1065PubMedCrossRefGoogle Scholar
  72. Sertizing P, Seifert M, Tilgen W, Reichrath J (2007) Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. J Cell Physiol 212:1–12CrossRefGoogle Scholar
  73. Shaerzadeh F, Motamedi F, Minai-Tehrani D, Khodagholi F (2013) Monitoring of neuronal loss in the hippocampus of Aβ-injected rat: autophagy, mitophagy, and mitochondrial biogenesis stand against apoptosis. Neuromolecular Med. doi: 10.1007/s12017-013-8272-8 PubMedGoogle Scholar
  74. Sheaffer KL, Wada K, Takahashi H, Matsuhashi N, Ohnishi S, Wolfe MM, Turner JR, Nakajima A, Borkan SC, Saubermann LJ (2005) Peroxisome proliferator-activated receptor gamma inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells. Cancer Res 65:2251–2259CrossRefGoogle Scholar
  75. Sheng M, Sabatini BL, Südhof TC (2012) Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol 4:a005777PubMedCentralPubMedCrossRefGoogle Scholar
  76. Silva DF, Selfridge JE, Lu J et al (2013) Bioenergetics flux, mitochondrial mass and mitochondrial morphology dynamics and AD and MCI cybrid cell lines. Hum Mol Genet. doi: 10.1093/hmg/ddt247 Google Scholar
  77. Silva-Alvarez C, Arrázola MS, Godoy JA, Ordenes D, Inestrosa NC (2013) Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5ª/Ca(2+) in mitocondrial dynamics. Front Cell Neurosci 7:97PubMedCentralPubMedCrossRefGoogle Scholar
  78. Singh I, Sagare AP, Coma M, Perlmutter D, Gelein R, Bell RD, Deane RJ, Zhong E, Parisi M, Ciszewski J, Kasper RT, Deane R (2013) Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. PNAS. doi: 10.1073/pnas.1302212110 Google Scholar
  79. Smith MA, Perry G, Richey PL et al (1996) Oxidative damage in Alzheimer’s. Nature 382:120–21PubMedCrossRefGoogle Scholar
  80. Strittmatter WJ (2012) Old drug, new hope for Alzheimer’s disease. Science 335:1447. doi: 10.1126/science.1220725 PubMedCrossRefGoogle Scholar
  81. Südhof TC (2012) The presynaptic active zone. Neuron 75:11–25PubMedCentralPubMedCrossRefGoogle Scholar
  82. Südhof TC (2013) Neurotransmitter release : the last millisecond in the life of a synaptic vesicle. Neuron 80:675–690PubMedCrossRefGoogle Scholar
  83. Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–80PubMedCrossRefGoogle Scholar
  84. Tesseur I, Lo AC, Roberfroid A et al (2013) Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 340:924. doi: 10.1126/science.1233937 PubMedCrossRefGoogle Scholar
  85. Tokutake T, Kasuga K, Yajima R, Sekine Y, Tezuka T, Nishizawa M, Ikeuchi T (2012) Hyperphosphorylation of tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway. J Biol Chem 287:35222–35233PubMedCentralPubMedCrossRefGoogle Scholar
  86. Toledo EM, Inestrosa NC (2010) Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer’s disease. Mol Psychiatry 15:272–285PubMedCrossRefGoogle Scholar
  87. Veeraraghavalu K, Zhang C, Miller S et al (2013) Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 340:924. doi: 10.1126/science.1235505 PubMedCrossRefGoogle Scholar
  88. Watson GS, Craft S (2003) The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs 17:27–45PubMedCrossRefGoogle Scholar
  89. Yin KJ, Deng Z, Hamblin M, Xiang Y, Huang H, Zhang J, Jiang X, Wang Y, Chen YE (2010) Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci 30:6398–6408PubMedCentralPubMedCrossRefGoogle Scholar
  90. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201PubMedCrossRefGoogle Scholar
  91. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimmer’s disease and other disorders. Nat Rev Neurosci 12:723–38PubMedCentralPubMedGoogle Scholar
  92. Zolezzi JM, Inestrosa NC (2013) Peroxisome proliferator-activated receptors and Alzheimer’s disease: hitting the blood-brain barrier. Mol Neurobiol. doi: 10.1007/s12035-013-8435-5 PubMedGoogle Scholar
  93. Zolezzi JM, Silva-Alvarez C, Ordenes D et al (2013) Peroxisome proliferator-activated receptor (PPAR) γ and PPARα agonists modulate mitochondrial fusion-fission dynamics: relevance to reactive oxygen species (ROS)-related neurodegenerative disorders? PLoS One 8:e64019. doi: 10.1371/journal.pone.0064019 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Departamento de Biología, Facultad de CienciasUniversidad de TarapacáAricaChile
  2. 2.Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileAlamedaChile

Personalised recommendations