Advertisement

Metabolic Brain Disease

, Volume 29, Issue 4, pp 1017–1025 | Cite as

Enhancement of functional connectivity, working memory and inhibitory control on multi-modal brain MR imaging with Rifaximin in Cirrhosis: Implications for the gut-liver-brain axis

  • Vishwadeep Ahluwalia
  • James B. Wade
  • Douglas M. Heuman
  • Thomas A. Hammeke
  • Arun J. Sanyal
  • Richard K. Sterling
  • R. Todd Stravitz
  • Velimir Luketic
  • Mohammad S. Siddiqui
  • Puneet Puri
  • Michael Fuchs
  • Micheal J. Lennon
  • Kenneth A. Kraft
  • HoChong Gilles
  • Melanie B. White
  • Nicole A. Noble
  • Jasmohan S. BajajEmail author
Research Article

Abstract

Minimal hepatic encephalopathy (MHE) impairs daily functioning in cirrhosis, but its functional brain impact is not completely understood. To evaluate the effect of rifaximin, a gut-specific antibiotic, on the gut-liver-brain axis in MHE. Hypothesis: Rifaximin will reduce endotoxemia, enhance cognition, increase activation during working memory(N-back) and reduce activation needed for inhibitory control tasks. Methods: Cirrhotics with MHE underwent baseline endotoxin and cognitive testing, then underwent fMRI, diffusion tensor imaging and MR spectroscopy(MRS). On fMRI, two tasks; N-back (outcome: correct responses) and inhibitory control tests(outcomes: lure inhibition) were performed. All procedures were repeated after 8 weeks of rifaximin. Results were compared before/after rifaximin. Results: 20 MHE patients (59.7 years) were included; sixteen completed pre/post-rifaximin scanning with 92 % medication compliance. Pre-rifaximin patients had cognitive impairment. At trial-end, there was a significantly higher correct 2-back responses, ICT lure inhibitions and reduced endotoxemia(p = 0.002). This was accompanied by significantly higher activation from baseline in subcortical structures (thalamus, caudate, insula and hippocampus) and left parietal operculum (LPO) during N-back, decrease in fronto-parietal activation required for inhibiting lures, including LPO during ICT compared to baseline values. Connectivity studies in N-back showed significant shifts in linkages after therapy in fronto-parietal regions with a reduction in fractional anisotropy (FA) but not mean diffusivity (MD), and no change in MRS metabolites at the end of the trial. A significant improvement in cognition including working memory and inhibitory control, and fractional anisotropy without effect on MD or MRS, through modulation of fronto-parietal and subcortical activation and connectivity was seen after open-label rifaximin therapy in MHE.

Keywords

Covert hepatic encephalopathy Working memory Microbiome Functional MRI Magnetic resonance spectroscopy Diffusion tensor imaging Endotoxin 

Notes

Grant Support

Partly supported by grants U01AT004428 from the National Center for Complementary and Alternative Medicine, grant RO1AA020203 from the National Institute on Alcohol Abuse and Alcoholism, grant RO1DK087913 from the National Institute of Diabetes and Digestive and Kidney Diseases, the McGuire Research Institute and an investigator-initiated grant from Salix Pharmaceuticals. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

11011_2014_9507_MOESM1_ESM.docx (245 kb)
ESM 1 (DOCX 245 kb)

References

  1. Amodio P, Montagnese S, Gatta A, Morgan MY (2004) Characteristics of minimal hepatic encephalopathy. Metab Brain Dis 19(3–4):253–267PubMedCrossRefGoogle Scholar
  2. Bajaj JS, Wade JB, Sanyal AJ (2009) Spectrum of neurocognitive impairment in cirrhosis: Implications for the assessment of hepatic encephalopathy. Hepatology 50(6):2014–2021. doi: 10.1002/hep.23216 PubMedCrossRefGoogle Scholar
  3. Bajaj JS, Heuman DM, Wade JB, Gibson DP, Saeian K, Wegelin JA, Hafeezullah M, Bell DE, Sterling RK, Stravitz RT, Fuchs M, Luketic V, Sanyal AJ (2011) Rifaximin improves driving simulator performance in a randomized trial of patients with minimal hepatic encephalopathy. Gastroenterology 140(2):478–487. doi: 10.1053/j.gastro.2010.08.061 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bajaj JS, Gillevet PM, Patel NR, Ahluwalia V, Ridlon JM, Kettenmann B, Schubert CM, Sikaroodi M, Heuman DM, Crossey MM, Bell DE, Hylemon PB, Fatouros PP, Taylor-Robinson SD (2012) A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy. Metab Brain Dis 27(2):205–215. doi: 10.1007/s11011-012-9303-0 PubMedCrossRefGoogle Scholar
  5. Bajaj JS, Heuman DM, Sanyal AJ, Hylemon PB, Sterling RK, Stravitz RT, Fuchs M, Ridlon JM, Daita K, Monteith P, Noble NA, White MB, Fisher A, Sikaroodi M, Rangwala H, Gillevet PM (2013) Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS One 8(4):e60042. doi: 10.1371/journal.pone.0060042 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Cavada C, Goldman-Rakic PS (1993) Multiple visual areas in the posteror parietal cortex of primates. In: Hicks T, Motochnikoff S, Ono T (eds) Progress in Brain Research. Elsevier, New YorkGoogle Scholar
  7. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386(6625):604–608PubMedCrossRefGoogle Scholar
  8. Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT (2002) Hepatic encephalopathy--definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 35(3):716–721. doi: 10.1053/jhep.2002.31250 PubMedCrossRefGoogle Scholar
  9. Frank MJ, Loughry B, O'Reilly RC (2001) Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn Affect Behav Neurosci 1(2):137–160PubMedCrossRefGoogle Scholar
  10. Garavan H, Ross TJ, Stein EA (1999) Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci U S A 96(14):8301–8306PubMedCentralPubMedCrossRefGoogle Scholar
  11. Grahn JA, Manly T (2012) Common neural recruitment across diverse sustained attention tasks. PLoS One 7(11):e49556PubMedCentralPubMedCrossRefGoogle Scholar
  12. Griffith HR, Richardson E, Pyzalski RW, Bell B, Dow C, Hermann BP, Seidenberg M (2006) Memory for famous faces and the temporal pole: functional imaging findings in temporal lobe epilepsy. Epilepsy & behavior : E&B 9(1):173–180. doi: 10.1016/j.yebeh.2006.04.024 CrossRefGoogle Scholar
  13. Helmstaedter C, Richter S, Roske S, Oltmanns F, Schramm J, Lehmann TN (2008) Differential effects of temporal pole resection with amygdalohippocampectomy versus selective amygdalohippocampectomy on material-specific memory in patients with mesial temporal lobe epilepsy. Epilepsia 49(1):88–97. doi: 10.1111/j.1528-1167.2007.01386.x PubMedCrossRefGoogle Scholar
  14. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, Calabresi PA, Pekar JJ, van Zijl PC, Mori S (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39(1):336–347. doi: 10.1016/j.neuroimage.2007.07.053 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Jain L, Sharma BC, Srivastava S, Puri SK, Sharma P, Sarin S (2013) Serum Endotoxin, Inflammatory mediators and Magnetic Resonance Spectroscopy before and after treatment in patients with Minimal Hepatic Encephalopathy. J Gastroenterol Hepatol. doi: 10.1111/jgh.12160 Google Scholar
  16. Kale RA, Gupta RK, Saraswat VA, Hasan KM, Trivedi R, Mishra AM, Ranjan P, Pandey CM, Narayana PA (2006) Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type C hepatic encephalopathy. Hepatology 43(4):698–706. doi: 10.1002/hep.21114 PubMedCrossRefGoogle Scholar
  17. Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau TM, Kosberg CL, D'Amico G, Dickson ER, Kim WR (2001) A model to predict survival in patients with end-stage liver disease. Hepatology 33(2):464–470. doi: 10.1053/jhep.2001.22172 PubMedCrossRefGoogle Scholar
  18. Klingberg T, O'Sullivan BT, Roland PE (1997) Bilateral activation of fronto-parietal networks by incrementing demand in a working memory task. Cereb Cortex 7(5):465–471PubMedCrossRefGoogle Scholar
  19. Leszczynski M (2011) How does hippocampus contribute to working memory processing? Front Hum Neurosci 5:168. doi: 10.3389/fnhum.2011.00168 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Liao LM, Zhou LX, Le HB, Yin JJ, Ma SH (2012) Spatial working memory dysfunction in minimal hepatic encephalopathy: an ethology and BOLD-fMRI study. Brain Res 1445:62–72. doi: 10.1016/j.brainres.2012.01.036 PubMedCrossRefGoogle Scholar
  21. McPhail MJ, Leech R, Grover VP, Fitzpatrick JA, Dhanjal NS, Crossey MM, Pflugrad H, Saxby BK, Wesnes K, Dresner MA, Waldman AD, Thomas HC, Taylor-Robinson SD (2013) Modulation of neural activation following treatment of hepatic encephalopathy. Neurology 80(11):1041–1047. doi: 10.1212/WNL.0b013e31828726e1 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Ortiz M, Jacas C, Cordoba J (2005) Minimal hepatic encephalopathy: diagnosis, clinical significance and recommendations. J Hepatol 42(Suppl (1)):S45–53. doi: 10.1016/j.jhep.2004.11.028 PubMedCrossRefGoogle Scholar
  23. Owen AM, Evans AC, Petrides M (1996) Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cereb Cortex 6(1):31–38PubMedCrossRefGoogle Scholar
  24. Pandya DN, Selzer B (1982) Intrinsic connections and architectonic's of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204:196–204PubMedCrossRefGoogle Scholar
  25. Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349(6304):61–64PubMedCrossRefGoogle Scholar
  26. Petrides M, Alivisatos B, Evans AC, Meyer E (1993) Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci U S A 90(3):873–877PubMedCentralPubMedCrossRefGoogle Scholar
  27. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679PubMedCrossRefGoogle Scholar
  28. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4):260–264. doi: 10.1002/nbm.698 PubMedCrossRefGoogle Scholar
  29. Sidhu SS, Goyal O, Mishra BP, Sood A, Chhina RS, Soni RK (2011) Rifaximin improves psychometric performance and health-related quality of life in patients with minimal hepatic encephalopathy (the RIME Trial). Am J Gastroenterol 106(2):307–316. doi: 10.1038/ajg.2010.455 PubMedCrossRefGoogle Scholar
  30. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–219. doi: 10.1016/j.neuroimage.2004.07.051 PubMedCrossRefGoogle Scholar
  31. Sugimoto R, Iwasa M, Maeda M, Urawa N, Tanaka H, Fujita N, Kobayashi Y, Takeda K, Kaito M, Takei Y (2008) Value of the apparent diffusion coefficient for quantification of low-grade hepatic encephalopathy. Am J Gastroenterol 103(6):1413–1420. doi: 10.1111/j.1572-0241.2008.01788.x PubMedCrossRefGoogle Scholar
  32. Tryc AB, Goldbecker A, Berding G, Rumke S, Afshar K, Shahrezaei GH, Pflugrad H, Barg-Hock H, Strassburg CP, Hecker H, Weissenborn K (2012) Cirrhosis-related Parkinsonism: Prevalence, mechanisms and response to treatments. J Hepatol. doi: 10.1016/j.jhep.2012.11.043 PubMedGoogle Scholar
  33. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, van Zijl P, Mori S (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36(3):630–644. doi: 10.1016/j.neuroimage.2007.02.049 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Weissenborn K, Ennen JC, Schomerus H, Ruckert N, Hecker H (2001) Neuropsychological characterization of hepatic encephalopathy. J Hepatol 34(5):768–773PubMedCrossRefGoogle Scholar
  35. Weissenborn K, Giewekemeyer K, Heidenreich S, Bokemeyer M, Berding G, Ahl B (2005) Attention, memory, and cognitive function in hepatic encephalopathy. Metab Brain Dis 20(4):359–367. doi: 10.1007/s11011-005-7919-z PubMedCrossRefGoogle Scholar
  36. Zafiris O, Kircheis G, Rood HA, Boers F, Haussinger D, Zilles K (2004) Neural mechanism underlying impaired visual judgement in the dysmetabolic brain: an fMRI study. Neuroimage 22(2):541–552. doi: 10.1016/j.neuroimage PubMedCrossRefGoogle Scholar
  37. Zhang LJ, Yang G, Yin J, Liu Y, Qi J (2007) Neural mechanism of cognitive control impairment in patients with hepatic cirrhosis: a functional magnetic resonance imaging study. Acta Radiol 48(5):577–587. doi: 10.1080/02841850701308378 PubMedCrossRefGoogle Scholar
  38. Zhang LJ, Zheng G, Zhang L, Zhong J, Wu S, Qi R, Li Q, Wang L, Lu G (2012a) Altered brain functional connectivity in patients with cirrhosis and minimal hepatic encephalopathy: a functional MR imaging study. Radiology 265(2):528–536. doi: 10.1148/radiol.12120185 CrossRefGoogle Scholar
  39. Zhang LJ, Zhong J, Lu GM (2012b) Multimodality MR imaging findings of low-grade brain edema in hepatic encephalopathy. AJNR Am J Neuroradiol 34(4):707–715. doi: 10.3174/ajnr.A2968 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vishwadeep Ahluwalia
    • 1
    • 2
  • James B. Wade
    • 3
  • Douglas M. Heuman
    • 2
  • Thomas A. Hammeke
    • 4
  • Arun J. Sanyal
    • 2
  • Richard K. Sterling
    • 2
  • R. Todd Stravitz
    • 2
  • Velimir Luketic
    • 2
  • Mohammad S. Siddiqui
    • 2
  • Puneet Puri
    • 2
  • Michael Fuchs
    • 2
  • Micheal J. Lennon
    • 1
  • Kenneth A. Kraft
    • 1
  • HoChong Gilles
    • 2
  • Melanie B. White
    • 2
  • Nicole A. Noble
    • 2
  • Jasmohan S. Bajaj
    • 2
    Email author
  1. 1.Division of RadiologyVirginia Commonwealth University and McGuire VA Medical CenterRichmondUSA
  2. 2.Division of Gastroenterology, Hepatology and NutritionVirginia Commonwealth University and McGuire VA Medical CenterRichmondUSA
  3. 3.Division of PsychiatryVirginia Commonwealth University and McGuire VA Medical CenterRichmondUSA
  4. 4.Division of PsychiatryMedical College of WisconsinMilwaukeeUSA

Personalised recommendations