Advertisement

Metabolic Brain Disease

, Volume 28, Issue 4, pp 563–570 | Cite as

Brain effect of insulin and clonazepam in diabetic rats under depressive-like behavior

  • Carlos Alberto Yasin Wayhs
  • Caroline Paula Mescka
  • Camila Simioni Vanzin
  • Graziela Schmitt Ribas
  • Gilian Guerreiro
  • Maurício Schüler Nin
  • Vanusa Manfredini
  • Helena Maria Tannhauser Barros
  • Carmen Regla Vargas
Original Paper

Abstract

Diabetes mellitus is characterized by hyperglycemia resulting from defects on insulin secretion, insulin action, or both. It has recently become clear that the central nervous system is not spared from the deleterious effects of diabetes, since diabetic encephalopathy was recognized as a complication of this heterogeneous metabolic disorder. There is a well recognized association between depression and diabetes, once prevalence of depression in diabetic patients is higher than in general population, and clonazepam is being used to treat this complication. Oxidative stress is widely accepted as playing a key mediatory role in the development and progression of diabetes and its complications. In this work we analyzed DNA damage by comet assay and lipid damage in prefrontal cortex, hippocampus and striatum of streptozotocin-induced diabetic rats submitted to the forced swimming test. It was verified that the diabetic group presented DNA and lipid damage in the brain areas evaluated, when compared to the control groups. Additionally, a significant reduction of the DNA and lipid damage in animals treated with insulin and/or clonazepam was observed. These data suggest that the association of these two drugs could protect against DNA and lipid damage in diabetic rats submitted to the forced swimming test, an animal model of depression.

Keywords

Brain Comet assay Depression Diabetes Lipid damage Oxidative stress 

Notes

Acknowledgments

We thank Mario Serapião for his technical support. We also appreciate the financial support from Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundo de Incentivo à Pesquisa e Eventos do Hospital de Clínicas de Porto Alegre (FIPE/HCPA). CRV is the recipient of a CNPq 2 Researcher Productivity Grant. HMTB is the recipient of a CNPq 1C Researcher Productivity Grant, and CAYW and CPM are recipients of fellowships from the CNPq or CAPES.

Conflict of interest

The authors declare that there are no conflicts of interest including any financial, personal or other relationships with other people or organizations.

References

  1. Barber M, Kasturi BS, Austin ME, Patel KP, MohanKumar SM, MohanKumar PS (2003) Diabetes-induced neuroendocrine changes in rats: role of brain monoamines, insulin and leptin. Brain Res 964(1):128–135PubMedCrossRefGoogle Scholar
  2. Bhatia S, Shukla R, Venkata Madhu S, Kaur Gambhir J, Madhava Prabhu K (2003) Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clin Biochem 36(7):557–562PubMedCrossRefGoogle Scholar
  3. Biessels GJ, Gispen WH (2005) The impact of diabetes on cognition: what can be learned from rodent models? Neurobiol Aging 26(Suppl 1):36–41. doi: 10.1016/j.neurobiolaging.2005.08.015 PubMedCrossRefGoogle Scholar
  4. Blasi C, Jeanrenaud B (1993) Insulin resistance syndrome: defective GABA neuromodulation as a possible hereditary pathogenetic factor (the ‘GABA hypothesis’). Med Hypotheses 40(4):197–206PubMedCrossRefGoogle Scholar
  5. Bouwman V, Adriaanse MC, Van ’t Riet E, Snoek FJ, Dekker JM, Nijpels G (2010) Depression, anxiety and glucose metabolism in the general dutch population: the new Hoorn study. PLoS One 5(4):e9971. doi: 10.1371/journal.pone.0009971 PubMedCrossRefGoogle Scholar
  6. Brands AM, Biessels GJ, de Haan EH, Kappelle LJ, Kessels RP (2005) The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28(3):726–735PubMedCrossRefGoogle Scholar
  7. Ceretta LB, Reus GZ, Stringari RB, Ribeiro KF, Zappellini G, Aguiar BW, Pfaffenseller B, Lersh C, Kapczinski F, Quevedo J (2012) Imipramine treatment reverses depressive-like behavior in alloxan-diabetic rats. Diabetes Metab Res Rev 28(2):139–144PubMedCrossRefGoogle Scholar
  8. Ceriello A (2003) New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 26(5):1589–1596PubMedCrossRefGoogle Scholar
  9. da Silva Haeser A, Sitta A, Barschak AG, Deon M, Barden AT, Schmitt GO, Landgraff S, Gomez R, Barros HM, Vargas CR (2007) Oxidative stress parameters in diabetic rats submitted to forced swimming test: the clonazepam effect. Brain Res 1154:137–143. doi: 10.1016/j.brainres.2007.03.088 CrossRefGoogle Scholar
  10. Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57(5 Suppl):779S–785S, discussion 785S–786SPubMedGoogle Scholar
  11. Figlewicz DP, Szot P (1991) Insulin stimulates membrane phospholipid metabolism by enhancing endogenous alpha 1-adrenergic activity in the rat hippocampus. Brain Res 550(1):101–107PubMedCrossRefGoogle Scholar
  12. Figlewicz DP, Ikeda H, Hunt TR, Stein LJ, Dorsa DM, Woods SC, Porte D Jr (1986) Brain insulin binding is decreased in Wistar Kyoto rats carrying the ‘fa’ gene. Peptides 7(1):61–65PubMedCrossRefGoogle Scholar
  13. Gomez R, Barros HM (2000) Ethopharmacology of the antidepressant effect of clonazepam in diabetic rats. Pharmacol Biochem Behav 66(2):329–335PubMedCrossRefGoogle Scholar
  14. Gonzalez JS, Peyrot M, McCarl LA, Collins EM, Serpa L, Mimiaga MJ, Safren SA (2008) Depression and diabetes treatment nonadherence: a meta-analysis. Diabetes Care 31(12):2398–2403. doi: 10.2337/dc08-1341 PubMedCrossRefGoogle Scholar
  15. Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, Collins A, Smith A, Speit G, Thybaud V, Tice RR (2003) Recommendations for conducting the in vivo alkaline Comet assay. 4th International Comet Assay Workshop. Mutagenesis 18(1):45–51PubMedCrossRefGoogle Scholar
  16. Hilakivi-Clarke LA, Wozniak KM, Durcan MJ, Linnoila M (1990) Behavior of streptozotocin-diabetic mice in tests of exploration, locomotion, anxiety, depression and aggression. Physiol Behav 48(3):429–433PubMedCrossRefGoogle Scholar
  17. Holmes CS, Richman LC (1985) Cognitive profiles of children with insulin-dependent diabetes. J Dev Behav Pediatr 6(6):323–326PubMedCrossRefGoogle Scholar
  18. Karatepe M (2004) Simultaneous determination of ascorbic acid and free malondialdehyde in human serum by HPLC-UV. LCGC North Am 22(5):362–365Google Scholar
  19. Kocic R, Pavlovic D, Kocic G (2007) Impact of intensive insulin treatment on the development and consequences of oxidative stress in insulin-dependent diabetes mellitus. Vojnosanit Pregl 64(9):623–628PubMedCrossRefGoogle Scholar
  20. Landar A, Zmijewski JW, Dickinson DA, Le Goffe C, Johnson MS, Milne GL, Zanoni G, Vidari G, Morrow JD, Darley-Usmar VM (2006) Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species. Am J Physiol Heart Circ Physiol 290(5):H1777–H1787. doi: 10.1152/ajpheart.01087.2005 PubMedCrossRefGoogle Scholar
  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  22. Lustman PJ, Anderson RJ, Freedland KE, de Groot M, Carney RM, Clouse RE (2000) Depression and poor glycemic control: a meta-analytic review of the literature. Diabetes Care 23(7):934–942PubMedCrossRefGoogle Scholar
  23. Manfredini V, Biancini GB, Vanzin CS, Dal Vesco AM, Cipriani F, Biasi L, Tremea R, Deon M, Peralba Mdo C, Wajner M, Vargas CR (2010) Simvastatin treatment prevents oxidative damage to DNA in whole blood leukocytes of dyslipidemic type 2 diabetic patients. Cell Biochem Funct 28(5):360–366. doi: 10.1002/cbf.1654 PubMedCrossRefGoogle Scholar
  24. Marks JL, Maddison J, Eastman CJ (1988) Subcellular localization of rat brain insulin binding sites. J Neurochem 50(3):774–781PubMedCrossRefGoogle Scholar
  25. Matsumoto H, Rhoads DE (1990) Specific binding of insulin to membranes from dendrodendritic synaptosomes of rat olfactory bulb. J Neurochem 54(1):347–350PubMedCrossRefGoogle Scholar
  26. Mijnhout GS, Scheltens P, Diamant M, Biessels GJ, Wessels AM, Simsek S, Snoek FJ, Heine RJ (2006) Diabetic encephalopathy: a concept in need of a definition. Diabetologia 49(6):1447–1448. doi: 10.1007/s00125-006-0221-8 PubMedCrossRefGoogle Scholar
  27. Morishita S (2009) Clonazepam as a therapeutic adjunct to improve the management of depression: a brief review. Hum Psychopharmacol 24(3):191–198. doi: 10.1002/hup.1015 PubMedCrossRefGoogle Scholar
  28. Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 49(9):1183–1186PubMedCrossRefGoogle Scholar
  29. Naudi A, Jove M, Ayala V, Cassanye A, Serrano J, Gonzalo H, Boada J, Prat J, Portero-Otin M, Pamplona R (2012) Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res 2012:696215. doi: 10.1155/2012/696215 PubMedCrossRefGoogle Scholar
  30. Pan HZ, Zhang H, Chang D, Li H, Sui H (2008) The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Br J Ophthalmol 92(4):548–551. doi: 10.1136/bjo.2007.130542 PubMedCrossRefGoogle Scholar
  31. Ramanathan M, Jaiswal AK, Bhattacharya SK (1998) Differential effects of diazepam on anxiety in streptozotocin induced diabetic and non-diabetic rats. Psychopharmacology (Berl) 135(4):361–367CrossRefGoogle Scholar
  32. Robles GI, Singh-Franco D (2009) A review of exenatide as adjunctive therapy in patients with type 2 diabetes. Drug Des Dev Ther 3:219–240CrossRefGoogle Scholar
  33. Rudolph U, Mohler H (2006) GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 6(1):18–23. doi: 10.1016/j.coph.2005.10.003 PubMedCrossRefGoogle Scholar
  34. Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr (1992) Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 13(3):387–414PubMedGoogle Scholar
  35. Sima AA, Kamiya H, Li ZG (2004) Insulin, C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol 490(1–3):187–197. doi: 10.1016/j.ejphar.2004.02.056 PubMedCrossRefGoogle Scholar
  36. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191PubMedCrossRefGoogle Scholar
  37. Speit G, Hartmann A (1995) The contribution of excision repair to the DNA effects seen in the alkaline single cell gel test (comet assay). Mutagenesis 10(6):555–559PubMedCrossRefGoogle Scholar
  38. Styskal J, Van Remmen H, Richardson A, Salmon AB (2012) Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic Biol Med 52(1):46–58. doi: 10.1016/j.freeradbiomed.2011.10.441 PubMedCrossRefGoogle Scholar
  39. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221PubMedCrossRefGoogle Scholar
  40. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi: 10.1016/j.biocel.2006.07.001 PubMedCrossRefGoogle Scholar
  41. Wan Q, Xiong ZG, Man HY, Ackerley CA, Braunton J, Lu WY, Becker LE, MacDonald JF, Wang YT (1997) Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388(6643):686–690. doi: 10.1038/41792 PubMedCrossRefGoogle Scholar
  42. Wayhs CA, Manfredini V, Sitta A, Deon M, Ribas G, Vanzin C, Biancini G, Ferri M, Nin M, Barros HM, Vargas CR (2010a) Protein and lipid oxidative damage in streptozotocin-induced diabetic rats submitted to forced swimming test: the insulin and clonazepam effect. Metab Brain Dis 25(3):297–304. doi: 10.1007/s11011-010-9211-0 PubMedCrossRefGoogle Scholar
  43. Wayhs CA, Manfredini V, Sitta A, Deon M, Ribas GS, Vanzin CS, Biancini GB, Nin MS, Barros HM, Vargas CR (2010b) Effects of insulin and clonazepam on DNA damage in diabetic rats submitted to the forced swimming test. Mutat Res 703(2):187–190. doi: 10.1016/j.mrgentox.2010.08.017 PubMedCrossRefGoogle Scholar
  44. Wei LT, Matsumoto H, Rhoads DE (1990) Release of immunoreactive insulin from rat brain synaptosomes under depolarizing conditions. J Neurochem 54(5):1661–1665PubMedCrossRefGoogle Scholar
  45. Wiernsperger NF (2003) Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab 29(6):579–585PubMedCrossRefGoogle Scholar
  46. Wilcox BJ, Corp ES, Dorsa DM, Figlewicz DP, Greenwood MR, Woods SC, Baskin DG (1989) Insulin binding in the hypothalamus of lean and genetically obese Zucker rats. Peptides 10(6):1159–1164PubMedCrossRefGoogle Scholar
  47. Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54(3):176–186PubMedCrossRefGoogle Scholar
  48. Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177(1–2):125–134PubMedCrossRefGoogle Scholar
  49. Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274(49):34893–34902PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Carlos Alberto Yasin Wayhs
    • 1
    • 2
  • Caroline Paula Mescka
    • 2
    • 3
  • Camila Simioni Vanzin
    • 2
    • 3
  • Graziela Schmitt Ribas
    • 2
  • Gilian Guerreiro
    • 2
    • 4
  • Maurício Schüler Nin
    • 5
  • Vanusa Manfredini
    • 6
  • Helena Maria Tannhauser Barros
    • 5
  • Carmen Regla Vargas
    • 1
    • 2
    • 3
  1. 1.Programa de Pós-Graduação em Ciências FarmacêuticasUFRGSPorto AlegreBrazil
  2. 2.Serviço de Genética MédicaHCPAPorto AlegreBrazil
  3. 3.Programa de Pós-Graduação em Ciências Biológicas: BioquímicaUFRGSPorto AlegreBrazil
  4. 4.Faculdade de FarmáciaUFRGSPorto AlegreBrazil
  5. 5.Departamento de Ciências Básicas da Saúde, Disciplina de FarmacologiaUniversidade Federal de Ciências da Saúde de Porto Alegre, UFCSPAPorto AlegreBrazil
  6. 6.Programa de Pós-Graduação em BioquímicaUNIPAMPAUruguaianaBrazil

Personalised recommendations