Metabolic Brain Disease

, Volume 28, Issue 2, pp 193–199 | Cite as

Acetyl-L-carnitine in hepatic encephalopathy

Original Paper

Abstract

Hepatic encephalopathy is a common complication of hepatic cirrhosis. The clinical diagnosis is based on two concurrent types of symptoms: impaired mental status and impaired neuromotor function. Impaired mental status is characterized by deterioration in mental status with psychomotor dysfunction, impaired memory, and increased reaction time, sensory abnormalities, poor concentration, disorientation and coma. Impaired neuromotor function include hyperreflexia, rigidity, myoclonus and asterixis. The pathogenesis of hepatic encephalopathy has not been clearly defined. The general consensus is that elevated levels of ammonia and an inflammatory response work in synergy to cause astrocyte to swell and fluid to accumulate in the brain which is thought to explain the symptoms of hepatic encephalopathy. Acetyl-L-carnitine, the short-chain ester of carnitine is endogenously produced within mitochondria and peroxisomes and is involved in the transport of acetyl-moieties across the membranes of these organelles. Acetyl-L-carnitine administration has shown the recovery of neuropsychological activities related to attention/concentration, visual scanning and tracking, psychomotor speed and mental flexibility, language short-term memory, attention, and computing ability. In fact, Acetyl-L-carnitine induces ureagenesis leading to decreased blood and brain ammonia levels. Acetyl-L-carnitine treatment decreases the severity of mental and physical fatigue, depression cognitive impairment and improves health-related quality of life. The aim of this review was to provide an explanation on the possible toxic effects of ammonia in HE and evaluate the potential clinical benefits of ALC.

Keywords

L-carnitine Acetyl-L-carnitine Ammonia Hepatic encephalopathy Cirrhosis 

Notes

Acknowledgments

Michele Malaguarnera was supported by the International PhD program in Neuropharmacology of the University of Catania.

Competing interests

The author declares that he has no competing interests

References

  1. Aureli T, Di Cocco ME, Puccetti C, Ricciolini R, Scalibastri M, Miccheli A, Manetti C, Conti F (1998) Acetyl-Lcarnitine modulates glucose metabolism and stimulates glycogen synthesis in rat brain. Brain Res 796(1–2):75–81. doi:10.1016/S0006-8993(98)00319-9 PubMedCrossRefGoogle Scholar
  2. Cauli O, Rodrigo R, Llansola M, Montoliu C, Monfort P, Piedrafita B, El Mlili N, Boix J, Agustí A, Felipo V (2009) Glutamatergic and gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy. Metab Brain Dis 24(1):69–80. doi:10.1007/s11011-008-9115-4 PubMedCrossRefGoogle Scholar
  3. Di Cesare Mannelli L, Ghelardini C, Toscano A, Pacini A, Bartolini A (2010) The neuropathy-protective agent acetylL-carnitine activates protein kinase C-gamma and MAPKs in a rat model of neuropathic pain. Neuroscience 165(4):1345–1352. doi:10.1016/j.neuroscience.2009.11.021 PubMedCrossRefGoogle Scholar
  4. Fiskum G, Rosenthal RE, Vereczki V, Martin E, Hoffman GE, Chinopoulos C, Kowaltowski A (2004) Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J Bioenerg Biomembr 36(4):347–352. doi:10.1023/B:JOBB.0000041766.71376.81 PubMedCrossRefGoogle Scholar
  5. Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q (2010) Role of carnitine in disease. Nutr Metab (Lond) 7:30. doi:10.1186/1743-7075-7-30 CrossRefGoogle Scholar
  6. Jones EA, Mullen KD (2012) Theories of the pathogenesis of hepatic encephalopathy. Clin Liver Dis 16(1):7–26. doi:10.1016/j.cld.2011.12.010 PubMedCrossRefGoogle Scholar
  7. Limketkai BN, Zucker SD (2008) Hyperammonemic encephalopathy caused by carnitine deficiency. J Gen Intern Med 23:210–213. doi:10.1007/s11606-007-0473-0 PubMedCrossRefGoogle Scholar
  8. Llansola M, Erceg S, Hernández-Viadel M, Felipo V (2002) Prevention of ammonia and glutamate neurotoxicity by carnitine: molecular mechanisms. Metab Brain Dis 17(4):389–397. doi:10.1023/A:1021922305036 PubMedCrossRefGoogle Scholar
  9. Malaguarnera M, Pistone G, Astuto M, Vecchio I, Raffaele R, Lo Giudice E, Rampello L (2006) Effects of Lacetylcarnitine on cirrhotic patients with hepatic coma: randomized double-blind, placebo-controlled trial. Dig Dis Sci 51(12):2242–2247. doi:10.1007/s10620-006-9187-0 PubMedCrossRefGoogle Scholar
  10. Malaguarnera M, Gargante MP, Cristaldi E, Vacante M, Risino C, Cammalleri L, Pennisi G, Rampello L (2008) Acetyl-L-carnitine treatment in minimal hepatic encephalopathy. Dig Dis Sci 53(11):3018–3025. doi:10.1007/s10620-008-0238-6 PubMedCrossRefGoogle Scholar
  11. Malaguarnera M, Risino C, Cammalleri L, Malaguarnera L, Astuto M, Vecchio I, Rampello L (2009) Branched chain amino acids supplemented with L-acetyl carniti ne versus BCAA treatment in hepatic coma: a randomized and controlled double blind study. Eur J Gastroenterol Hepatol 21(7):762–770. doi:10.1097/MEG.0b013e328309c791 PubMedCrossRefGoogle Scholar
  12. Malaguarnera M, Bella R, Vacante M, Giordano M, Malaguarnera G, Gargante MP, Motta M, Mistretta A, Rampello L, Pennisi G (2011a) Acetyl-L-carnitine reduces depression and improves quality of life in patients with minimal hepatic encephalopathy. Scand J Gastroenterol 46(6):750–759. doi:10.3109/00365521.2011.565067 PubMedCrossRefGoogle Scholar
  13. Malaguarnera M, Vacante M, Giordano M, Pennisi G, Bella R, Rampello L, Malaguarnera M, Li Volti G, Galvano F (2011b) Oral acetyl-L-carnitine therapy reduces fatigue in overt hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr 93(4):799–808. doi:10.3945/ajcn.110.007393 PubMedCrossRefGoogle Scholar
  14. Malaguarnera M, Vacante M, Motta M, Giordano M, Malaguarnera G, Bella R, Nunnari G, Rampello L, Pennisi G (2011c) Acetyl-L-carniti ne improves cognitive functions in severe hepatic encephal opathy: a randomized and controlled clinical trial. Metab Brain Dis 26(4):281–289. doi:10.1007/s11011-011-9260-z PubMedCrossRefGoogle Scholar
  15. Malaguarnera M, Vacante M, Giordano M, Motta M, Bertino G, Pennisi M, Neri S, Malaguarnera M, Li Volti G, Galvano F (2011d) L-carnitine supplementation improves hematological pattern in patients affected by HCV treated with Peg interferon-a 2b plus ribavirin. World J Gastroenterol 17(39):4414–4420. doi:10.3748/wjg.v17.i39.4414 PubMedCrossRefGoogle Scholar
  16. Matsuda I, Ohtani Y (1986) Carnitine status in Reye and Reye-like syndromes. Pediatr Neurol 2(2):90–94PubMedCrossRefGoogle Scholar
  17. McPhail MJ, Bajaj JS, Thomas HC, Taylor-Robinson SD (2010) Pathogenesis and diagnosis of hepatic encephalopathy. Expert Rev Gastroenterol Hepatol 4(3):365–378. doi:10.1586/egh.10.32 PubMedCrossRefGoogle Scholar
  18. Miñana MD, Hermenegildo C, Llsansola M, Montoliu C, Grisolía S, Felipo V (1996) Carnitine and choline derivatives containing a trimethylamine group prevent ammonia toxicity in mice and glutamate toxicity in primary cultures of neurons. J Pharmacol Exp Ther 279(1):194–199PubMedGoogle Scholar
  19. Norenberg MD, Jayakumar AR, Rama Rao KV (2004) Oxidative stress in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 19(3–4):313–329. doi:10.1023/B:MEBR.0000043978.91675.79 PubMedCrossRefGoogle Scholar
  20. Peluso G, Barbarisi A, Savica V, Reda E, Nicolai R, Benatti P, Calvani M (2000) Carnitine: an osmolyte that plays a metabolic role. J Cell Biochem 80(1):1–10. doi:10.1002/1097-4644(20010101) PubMedCrossRefGoogle Scholar
  21. Rama Rao KV, Norenberg MD (2012) Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy. Neurochem Int 60(7):697–706. doi:10.1016/j.neuint.2011.09.007 PubMedCrossRefGoogle Scholar
  22. Rama Rao KV, Jayakumar AR, Norenberg MD (2012) Glutamine in the pathogenesis of acute hepatic encephalopathy. Neurochem Int. doi:10.1016/j.neuint.2012.01.012
  23. Ratnakumari L, Qureshi IA, Butterworth RF (1993) Effect of L-carnitine on cerebral and hepatic energy metabolites in congenitally hyperammonemic sparse-fur mice and its role during benzoate therapy. Metabolism 42(8):1039–1046. doi:10.1016/0026-0495(93)90020-O PubMedCrossRefGoogle Scholar
  24. Rebouche CJ (1992) Carnitine function and requirements during the life cycle. FASEB J 6(15):3379–3386PubMedGoogle Scholar
  25. Rodrigo R, Cauli O, Boix J, ElMlili N, Agusti A, Felipo V (2009) Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications. Neurochem Int 55(1–3):113–118. doi:10.1016/j.neuint.2009.01.007 PubMedCrossRefGoogle Scholar
  26. Rose C, Felipo V (2005) Limited capacity for ammonia removal by brain in chronic liver failure: potential role of nitric oxide. Metab Brain Dis 20(4):275–283. doi:10.1007/s11011-005-7906-4 PubMedCrossRefGoogle Scholar
  27. Scafidi S, Fiskum G, Lindauer SL, Bamford P, Shi D, Hopkins I, McKenna MC (2010) Metabolism of acetyl-Lcarnitine for energy and neurotransmitter synthesis in the immature rat brain. J Neurochem 114(3):820–831. doi:10.1111/j.1471-4159.2010.06807.x PubMedCrossRefGoogle Scholar
  28. Therrien G, Rose C, Butterworth J, Butterworth RF (1997) Protective effect of L-carnitine in ammonia-precipitated encephalopathy in the portacaval shunted rat. Hepatology 25(3):551–556. doi:10.1002/hep.510250310 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.International Ph.D. Program in NeuropharmacologyUniversity of CataniaCataniaItaly
  2. 2.Research Center “The Great Senescence”University of CataniaCataniaItaly

Personalised recommendations