Metabolic Brain Disease

, Volume 28, Issue 2, pp 145–150 | Cite as

Liver-brain proinflammatory signalling in acute liver failure: Role in the pathogenesis of hepatic encephalopathy and brain edema

  • Chantal Bémeur
  • Roger F. ButterworthEmail author
Original Paper


A robust neuroinflammatory response characterized by microglial activation and increased brain production of pro-inflammatory cytokines is common in acute liver failure (ALF). Mechanisms proposed to explain the neuroinflammatory response in ALF include direct effects of systemically-derived proinflammatory cytokines and the effects of brain lactate accumulation on pro-inflammatory cytokine release from activated microglia. Cell culture studies reveal a positive synergistic effect of ammonia and pro-inflammatory cytokines on the expression of proteins involved in glutamate homeostasis and in oxidative/nitrosative stress. Proinflammatory cytokines have the capacity to alter blood–brain barrier (BBB) integrity and preliminary studies suggest that the presence of infection in ALF results in rupture of the BBB and vasogenic brain edema. Treatments currently under investigation that are effective in prevention of encephalopathy and brain edema in ALF which are aimed at reduction of neuroinflammation in ALF include mild hypothermia, albumin dialysis systems, N-acetyl cysteine and the antibiotic minocycline with potent anti-inflammatory actions that are distinct from its anti-microbial properties.


Hepatic encephalopathy Neuroinflammation Cytokines Microglia Blood–brain barrier Hypothermia Ammonia 



Studies from the author’s research unit were funded by operating grants from The Canadian Institutes of Health Research (CIHR).


  1. Ahboucha S, Gamrani H, Baker G (2012) GABAergic neurosteroids: The “endogenous benzodiazepines” of acute liver failure. Neurochem Int 60(7):707–714PubMedCrossRefGoogle Scholar
  2. Acharya SK, Bhatia V, Sreenivas V, Khanal S, Panda SK (2009) Efficacy of L-ornithine L-aspartate in acute liver failure: a double-blind, randomized, placebo-controlled study. Gastroenterol 136:2159–2168CrossRefGoogle Scholar
  3. Andersson AK, Rönnbäck L, Hansson E (2005) Lactate induces tumour necrosis factor-alpha, interleukin-6 and interleukin-1beta release in microglial- and astroglial-enriched primary cultures. J Neurochem 93:1327–1333PubMedCrossRefGoogle Scholar
  4. Bélanger M, Desjardins P, Chatauret N, Butterworth RF (2006) Selectively increased expression of the astrocytic/endothelial glucose transporter protein GLUT1 in acute liver failure. Glia 53(5):557–562PubMedCrossRefGoogle Scholar
  5. Bémeur C, Vaquero J, Desjardins P, Butterworth RF (2007) Protein microarray study reveals toxin-selective cytokine profiles in experimental acute liver failure: beneficial effects of mild hypothermia and N-acetylcysteine. Hepatology 44:611AGoogle Scholar
  6. Bémeur C, Qu H, Desjardins P, Butterworth RF (2008) IL-1β and TNF-α receptor knockouts delay progression of encephalopathy and brain edema in experimental acute liver failure. Hepatology 48:81AGoogle Scholar
  7. Bémeur C, Chastre A, Desjardins P, Butterworth RF (2010a) No changes in expression of tight junction proteins or blood–brain barrier permeability in azoxymethane-induced experimental acute liver failure. Neurochem Int 56:205–207CrossRefGoogle Scholar
  8. Bémeur C, Vaquero J, Desjardins P, Butterworth RF (2010b) N-acetylcysteine attenuates cerebral complications of non-acetaminophen-induced acute liver failure in mice: antioxidant and anti-inflammatory mechanisms. Metab Brain Dis 25:241–249PubMedCrossRefGoogle Scholar
  9. Bémeur C, Qu H, Desjardins P, Butterworth RF (2010c) IL-1 or TNF receptor gene deletion delays onset of encephalopathy and attenuates brain edema in experimental acute liver failure. Neurochem Int 56:213–215PubMedCrossRefGoogle Scholar
  10. Bernal W, Donaldson P, Underhill J, Wendon J, Williams R (1998) Tumor necrosis factor genomic polymorphism and outcome of acetaminophen (paracetamol)-induced acute liver failure. J Hepatol 29:53–59PubMedCrossRefGoogle Scholar
  11. Bernal W, Hall C, Karvellas CJ, Auzinger G, Sizer E, Wendon J (2007) Arterial ammonia and clinical risk factors for encephalopathy and intracranial hypertension in acute liver failure. Hepatology 46:1844–1852PubMedCrossRefGoogle Scholar
  12. Bozza FA, Garteiser P, Oliveira MF, Doblas S, Cranford R, Saunders D, Jones I, Towner RA, Castro-Faria-Neto HC (2010) Sepsis-associated encephalopathy: a magnetic resonance imaging and spectroscopy study. J Cereb Blood Flow Metab 30:440–448PubMedCrossRefGoogle Scholar
  13. Butterworth RF (2011) Hepatic encephalopathy: A central neuroinflammatory disorder? Hepatology 53:1372–1376PubMedCrossRefGoogle Scholar
  14. Butterworth RF (2012) “Chapter 3: Neuroinflammation in the pathogenesis of hepatic encephalopathy.” In Hepatic Encephalopathy, Mullen KD and Prakash RK (editors), Clinical Gastroenterology: 19–34Google Scholar
  15. Chastre A, Jiang W, Desjardins P, Butterworth RF (2010) Ammonia and proinflammatory cytokines modify expression of genes coding for astrocytic proteins implicated in brain edema in acute liver failure. Metab Brain Dis 25:17–21PubMedCrossRefGoogle Scholar
  16. Chastre A, Bélanger M, Butterworth RF (2012a) Modest systemic inflammation precipitates encephalopathy and ruptures the blood–brain barrier in acute liver failure. Hepatology 56:956AGoogle Scholar
  17. Chastre A, Bélanger M, Beauchesne E, Nguyen BN, Desjardins P, Butterworth RF (2012b) Inflammatory cascades driven by tumor necrosis factor-alpha play a major role in the progression of acute liverfailure and its neurological complications. PLoS One 7(11):e49670Google Scholar
  18. Chatauret N, Zwingmann C, Rose C, Leibfritz D, Butterworth RF (2003) Effects of hypothermia on brain glucose metabolism in acute liver failure: a H/C-nuclear magnetic resonance study. Gastroenterol 125:815–824CrossRefGoogle Scholar
  19. Chu CJ, Wang SS, Lee FY, Chang FY, Lin HC, Hou MC, Chan CC, Wu SL, Chen CT, Huang HC, Lee SD (2001) Detrimental effects of nitric oxide inhibition on hepatic encephalopathy in rats with thioacetamide-induced fulminant hepatic failure. Eur J Clin Invest 31:156–163PubMedCrossRefGoogle Scholar
  20. Chung C, Gottstein J, Blei AT (2001) Indomethacin prevents the development of experimental ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 34:249–254PubMedCrossRefGoogle Scholar
  21. Claudio L, Martiney JA, Brosnan CF (1994) Ultrastructural studies of the blood-retina barrier after exposure to interleukin-1 beta or tumor necrosis factor-alpha. Lab Invest 70(6):850–861PubMedGoogle Scholar
  22. Clemmeson JO, Larsen FS, Kondrup J, Hansen BA, Ott P (1999) Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 29:648–653CrossRefGoogle Scholar
  23. Davies DC (2002) Blood–brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 200:639–646PubMedCrossRefGoogle Scholar
  24. Deutz NE, Chamuleau RA, de Graaf AA, Bovée WM, de Beer R (1988) In vivo 31P NMR spectroscopy of the rat cerebral cortex during acute hepatic encephalopathy. NMR Biomed 1:101–106PubMedCrossRefGoogle Scholar
  25. de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J (1996) The influence of cytokines on the integrity of the blood–brain barrier in vitro. J Neuroimmunol 64:37–43PubMedCrossRefGoogle Scholar
  26. Dixit V, Chang TM (1990) Brain edema and the blood brain barrier in galactosamine-induced fulminant hepatic failure rats. An animal model for evaluation of liver support systems. ASAIO Trans 36(1):21–27PubMedGoogle Scholar
  27. Guo LM, Liu JY, Xu DZ, Li BS, Han H, Wang LH, Zhang WY, Lu LH, Guo X, Sun FX, Zhang HY, Liu XD, Zhang JP, Yao Y, He ZP, Wang MM (2003) Application of molecular adsorbents recirculating system to remove NO and cytokines in severe liver failure patients with multiple organ dysfunction syndrome. Liver Int 23:16–20PubMedCrossRefGoogle Scholar
  28. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Cheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflamm 5:15CrossRefGoogle Scholar
  29. Jeppsson B, Freund HR, Gimmon Z, James JH, von Meyenfeldt MF, Fischer JE (1981) Blood–brain barrier derangement in sepsis: cause of septic encephalopathy? Am J Surg 14:136–142CrossRefGoogle Scholar
  30. Jiang W, Qu H, Desjardins P, Chatauret N, Bélanger M, Butterworth RF (2006) Unequivocal evidence for cytokine accumulation in brain in experimental acute liver failure. Hepatology 44:366AGoogle Scholar
  31. Jiang W, Desjardins P, Butterworth RF (2009a) Direct evidence for central proinflammatory mechanisms in rats with experimental acute liver failure: protective effect of hypothermia. J Cereb Blood Flow Metab 29:944–9952PubMedCrossRefGoogle Scholar
  32. Jiang W, Desjardins P, Butterworth RF (2009b) Molecular basis of synergism between brain ammonia and proinflammatory mechanisms in acute liver failure. Hepatology 50:116AGoogle Scholar
  33. Jiang W, Desjardins P, Butterworth RF (2009c) Cerebral inflammation contributes to encephalopathy and brain edema in acute liver failure: protective effect of minocycline. J Neurochem 109:485–493PubMedCrossRefGoogle Scholar
  34. Kato M, Hughes RD, Keays RT, Williams R (1992) Electron microscopic study of brain capillaries in cerebral edema from fulminant hepatic failure. Hepatology 15:1060–1066PubMedCrossRefGoogle Scholar
  35. Kim KS, Wass CA, Cross AS, Opal SM (1992) Modulation of blood–brain barrier permeability by tumor necrosis factor and antibody to tumor necrosis factor in the rat. Lymphokine Cytokine Res 11:293–298PubMedGoogle Scholar
  36. Knecht K, Michalak A, Rose C, Rothstein JD, Butterworth RF (1997) Decreased glutamate transporter (GLT-1) expression in frontal cortex of rats with acute liver failure. Neurosci Lett 229:201–203PubMedCrossRefGoogle Scholar
  37. Lai JC, Cooper AJ (1986) Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 47:1376–1386PubMedCrossRefGoogle Scholar
  38. Livingstone AS, Potvin M, Goresky CA, Finlayson MH, Hinchey EJ (1977) Changes in the blood–brain barrier in hepatic coma after hepatectomy in the rat. Gastroenterol 73:697–704Google Scholar
  39. Michalak A, Rose C, Butterworth J, Butterworth RF (1996) Neuroactive amino acids and glutamate (NMDA) receptors in frontal cortex of rats with experimental acute liver failure. Hepatology 24:908–913PubMedCrossRefGoogle Scholar
  40. Nguyen JH (2012) Blood–brain barrier in acute liver failure. Neurochem Int 60:676–683PubMedCrossRefGoogle Scholar
  41. Norenberg MD, Huo Z, Neary JT, Roig-Cantesano A (1997) The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: relation to energy metabolism and glutamatergic neurotransmission. Glia 21:124–133PubMedCrossRefGoogle Scholar
  42. Odeh M (2007) Pathogenesis of hepatic encephalopathy: the tumour necrosis factor-alpha theory. Eur J Clin Invest 37:291–304PubMedCrossRefGoogle Scholar
  43. Vaquero J, Polson J, Chung C, Helenowski I, Schiodt FV, Reisch J, Lee WM, Blei AT (2003) Infection and the progression of hepatic encephalopathy in acute liver failure. Gastroenterol 125:755–764CrossRefGoogle Scholar
  44. Vaquero J (2012) Therapeutic hypothermia in the management of acute liver failure. Neurochem Int 60:723–735PubMedCrossRefGoogle Scholar
  45. Wright G, Shawcross D, Olde Damink SW, Jalan R (2007) Brain cytokine flux in acute liver failure and its relationship with intracranial hypertension. Metab Brain Dis 22:375–388PubMedCrossRefGoogle Scholar
  46. Zwingmann C, Chatauret N, Leibfritz D, Butterworth RF (2003) Selective increase of brain lactate synthesis in experimental acute liver failure: results of [H-C] nuclear magnetic resonance study. Hepatology 37:420–428PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Département de nutrition, Faculté de médecineUniversité de MontréalMontréalCanada
  2. 2.Unité de recherche en neurosciences, Hôpital Saint-Luc (CHUM)Université de MontréalMontréalCanada
  3. 3.Neuroscience Research UnitHôpital Saint-Luc (CHUM)MontrealCanada

Personalised recommendations