Metabolic Brain Disease

, Volume 28, Issue 2, pp 277–279 | Cite as

Role of diabetes mellitus on hepatic encephalopathy

  • Javier Ampuero
  • Isidora Ranchal
  • María del Mar Díaz-Herrero
  • José Antonio del Campo
  • Juan D. Bautista
  • Manuel Romero-Gómez
Original Paper


Hepatic encephalopathy is the main cognitive dysfunction in cirrhotic patients associated with impaired prognosis. Hyperammonemia plus inflammatory response do play a crucial role on hepatic encephalopathy. However, in some patients HE appeared without hyperammonemia and patients with increased levels of ammonia could not show cognitive dysfunction. This has led to investigate other factors that could act in a synergistic way. Diabetes mellitus and insulin resistance are characterized by releasing and enhancing these pro-inflammatory cytokines and, additionally, has been related to hepatic encephalopathy. Indeed, patients with diabetes showed raised risk of over hepatic encephalopathy in comparison with non-cirrhotics. Type 2 diabetes mellitus could impair hepatic encephalopathy by different mechanisms that include: a) increasing glutaminase activity; b) impairing gut motility and promoting constipation, intestinal bacterial overgrowth and bacterial translocation. Despite of insufficient clarity about the practicability of anti-diabetic therapy and the most efficacious therapy, we would have to pay a special attention to the management of type 2 diabetes mellitus and insulin resistance in cirrhotic patients.


Hepatic encephalopathy Inflammation Diabetes mellitus Glutaminase Ammonia 



Hepatic encephalopathy


Diabetes mellitus


Type 2 diabetes mellitus


Hepatogenous diabetes


Tumor necrosis factor alpha


Interleukin 6




Kidney-type glutaminase


Liver-type glutaminase


Blood brain barrier


Insulin resistance


Small intestine bacterial overgrowth


Minimal hepatic encephalopathy


Conflict of interest

The authors declare that they have no conflict of interest.


  1. Baffy G (2012) Editorial: hepatocellular carcinoma in type 2 diabetes: more than meets the eye. Am J Gastroenterol 107(1):53–55PubMedCrossRefGoogle Scholar
  2. Baglietto-Vargas D, Lopez-Tellez JF, Moreno-Gonzalez I, Gutierrez A, Aledo JC (2004) Segregation of two glutaminase isoforms in islets of Langerhans. Biochem J 381:483–487PubMedCrossRefGoogle Scholar
  3. Basu S, Zethelius B, Helmersson B et al (2011) Cytokine-mediated inflammation is independently associated with insulin sensitivity measured by the euglycemic insulin clamp in a community-based cohort of elderly men. Int J Clin Exp Med 4(2):164–168PubMedGoogle Scholar
  4. Bustamante J, Rimola A, Ventura PJ et al (1999) Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J Hepatol 30:890–895PubMedCrossRefGoogle Scholar
  5. Chow LS, Albright RC, Bigelow ML, Toffolo G, Cobelli C, Nair KS (2006) Mechanism of insulin’s anabolic effect on muscle: measurements of muscle protein synthesis and breakdown using aminoacyl-tRNA and other surrogate measures. Am J Physiol Endocrinol Metab 291:E729–E736PubMedCrossRefGoogle Scholar
  6. Garcia-Compean D, Jaquez-Quintana JO, Gonzalez-Gonzalez JA et al (2009) Liver cirrhosis and diabetes: risk factors, pathophysiology, clinical implications and management. World J Gastroenterol 15:280–288PubMedCrossRefGoogle Scholar
  7. Goral V, Atayan Y, Kaplan A (2011) The relation between pathogenesis of liver cirrhosis, hepatic encephalopathy and serum cytokine levels: what is the role of tumor necrosis factor alpha? Hepato-Gastroenterology 58:943–948PubMedGoogle Scholar
  8. Gundling F, Schmidtler F, Hapfelmeier A et al (2011) Fecal calprotectin is a useful screening parameter for hepatic encephalopathy and spontaneous bacterial peritonitis in cirrhosis. Liver Int 31:1406–1415PubMedCrossRefGoogle Scholar
  9. Jun DW, Kim KT, Lee OY et al (2010) Association between small intestinal bacterial overgrowth and peripheral bacterial DNA in cirrhotic patients. Dig Dis Sci 55:1465–1471PubMedCrossRefGoogle Scholar
  10. Kalaitzakis E, Olsson R, Henfridsson P et al (2007) Malnutrition and diabetes mellitus are related to hepatic encephalopathy in patients with liver cirrhosis. Liver Int 27(9):1194–1201PubMedGoogle Scholar
  11. Krabbe KS, Reichenberg A, Yirmiya R, Smed A, Pedersen BK, Bruunsgaard H (2005) Low-dose endotoxemia and human neuropsychological functions. Brain Behav Immun 19(5):453–460PubMedCrossRefGoogle Scholar
  12. Montoliu C, Piedrafita B, Serra MA et al (2009) IL-6 and IL-18 in blood may discriminate cirrhotic patients with and without minimal hepatic encephalopathy. J Clin Gastroenterol 43(3):272–279PubMedCrossRefGoogle Scholar
  13. Nelson TE, Netzeband JG, Gruol DL (2004) Chronic interleukin-6 exposure alters metabotropic glutamate receptor-activated calcium signalling in cerebellar Purkinje neurons. Eur J Neurosci 20:2387–2400PubMedCrossRefGoogle Scholar
  14. Odeh M, Sabo E, Srugo I, Oliven A (2004) Serum levels of tumor necrosis factor-alpha correlate with severity of hepatic encephalopathy due to chronic liver failure. Liver Int 24(2):110–116PubMedCrossRefGoogle Scholar
  15. Romero-Gómez M (2005) Role of phosphate-activated glutaminase in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 20:319–325PubMedCrossRefGoogle Scholar
  16. Romero-Gómez M (2010) Pharmacotherapy of hepatic encephalopathy in cirrhosis. Expert Opin Pharmacother 11:1317–1327PubMedCrossRefGoogle Scholar
  17. Romero-Gómez M, Boza F, García-Valdecasas MS, García E, Aguilar-Reina J (2001) Subclinical hepatic encephalopathy predicts the development of overt hepatic encephalopathy. Am J Gastroenterol 96:2718–2723PubMedGoogle Scholar
  18. Romero-Gómez M, Ramos-Guerrero R, Grande L et al (2004) Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J Hepatol 41(1):49–54PubMedCrossRefGoogle Scholar
  19. Sigal SH, Stanca CM, Kontorinis N, Bodian C, Ryan E (2006) Diabetes mellitus is associated with hepatic encephalopathy in patients with HCV cirrhosis. Am J Gastroenterol 101(7):1490–1496PubMedCrossRefGoogle Scholar
  20. Squires SA, Ewart HS, McCarthy C, Brosnan ME, Brosnan JT (1997) Regulation of hepatic glutaminase in the streptozotocin-induced diabetic rat. Diabetes 46(12):1945–1949PubMedCrossRefGoogle Scholar
  21. Watford M, Smith EM, Erbelding EJ (1984) The regulation of phosphate-activated glutaminase activity and glutamine metabolism in the streptozotocin-diabetic rat. Biochem J 224:207–214PubMedGoogle Scholar
  22. Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE (2002) Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology 59:371–378PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Javier Ampuero
    • 1
  • Isidora Ranchal
    • 1
  • María del Mar Díaz-Herrero
    • 2
  • José Antonio del Campo
    • 1
  • Juan D. Bautista
    • 2
  • Manuel Romero-Gómez
    • 1
  1. 1.Unit for Clinical Management of Digestive Diseases and CIBERehd, Hospital Universitario de ValmeUniversity of SevillaSevillaSpain
  2. 2.Department of Molecular BiologyUniversity of SevillaSevillaSpain

Personalised recommendations