Metabolic Brain Disease

, Volume 27, Issue 2, pp 131–141 | Cite as

The spleen contributes to stroke induced neurodegeneration through interferon gamma signaling

  • Hilary A. Seifert
  • Christopher C. Leonardo
  • Aaron A. Hall
  • Derrick D. Rowe
  • Lisa A. Collier
  • Stanley A. Benkovic
  • Alison E. Willing
  • Keith R. Pennypacker
Original Paper


Delayed neuronal death associated with stroke has been increasingly linked to the immune response to the injury. Splenectomy prior to middle cerebral artery occlusion (MCAO) is neuroprotective and significantly reduces neuroinflammation. The present study investigated whether splenic signaling occurs through interferon gamma (IFNγ). IFNγ was elevated early in spleens but later in the brains of rats following MCAO. Splenectomy decreased the amount of IFNγ in the infarct post-MCAO. Systemic administration of recombinant IFNγ abolished the protective effects of splenectomy with a concurrent increase in INFγ expression in the brain. These results suggest a role for spleen-derived IFNγ in stroke pathology.


Brain ischemia Cytokine Microglia/macrophages MCAO 



Middle cerebral artery occlusion


Interferon gamma




Postnatal day 3


Prenatal day 18


Internal carotid artery


External carotid artery


Recombinant interferon gamma






Phosphate buffered saline


3 3′-diaminobenzidine


Dimethyl sulfoxide


Tris-buffered saline


Oxygen glucose deprivation


Platelet derived growth factor-AA


Lactate dehydrogenase


Major histocompatibility complex

NKT cell

Natural killer T cell





We would like to thank Dr. Chris Katnik for his help obtaining neuronal cultures and Dr. Thomas Klein for his insights into immunology. This work was supported by the National Institutes Health grant RO1 NS052839.

Conflicts of Interest

The authors have no conflicts of interest.


NIH grant RO1 NS052839.


  1. Ajmo CT Jr, Vernon DO, Collier L, Pennypacker KR, Cuevas J (2006) Sigma receptor activation reduces infarct size at 24 hours after permanent middle cerebral artery occlusion in rats. Curr Neurovasc Res 3(2):89–98PubMedCrossRefGoogle Scholar
  2. Ajmo CT Jr, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, Pennypacker KR (2008) The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res 86:2227–2234PubMedCrossRefGoogle Scholar
  3. Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21(17):6480–6491PubMedGoogle Scholar
  4. Barres BA, Schmid R, Sendnter M, Raff MC (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118(1):283–295PubMedGoogle Scholar
  5. Becker KJ, Kindrick DL, Lester MP, Shea C, Ye ZC (2005) Sensitization to brain antigens after stroke is augmented by lipopolysaccharide. J Cereb Blood Flow Metab 25(12):1634–1644PubMedCrossRefGoogle Scholar
  6. Becker KJ, Kalil AJ, Tanzi P, Zierath DK, Savos AV, Gee JM, Hadwin J, Carter KT, Shibata D, Cain KC (2011) Autoimmune Responses to the Brain After Stroke Are Associated With Worse Outcome. StrokeGoogle Scholar
  7. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795PubMedCrossRefGoogle Scholar
  8. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ (2001) Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 21(15):5528–5534PubMedGoogle Scholar
  9. Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332(20):1351–1362PubMedCrossRefGoogle Scholar
  10. Duckworth EA, Butler TL, De Mesquita D, Collier SN, Collier L, Pennypacker KR (2005) Temporary focal ischemia in the mouse: technical aspects and patterns of Fluoro-Jade evident neurodegeneration. Brain Res 1042(1):29–36PubMedCrossRefGoogle Scholar
  11. Gottschall PE, Yu X, Bing B (1995) Increased production of gelatinase B (matrix metalloproteinase-9) and interleukin-6 by activated rat microglia in culture. J Neurosci Res 42(3):335–342PubMedCrossRefGoogle Scholar
  12. Hall AA, Guyer AG, Leonardo CC, Ajmo CT Jr, Collier LA, Willing AE, Pennypacker KR (2009a) Human umbilical cord blood cells directly suppress ischemic oligodendrocyte cell death. J Neurosci Res 87(2):333–341PubMedCrossRefGoogle Scholar
  13. Hall AA, Leonardo CC, Collier LA, Rowe DD, Willing AE, Pennypacker KR (2009b) Delayed treatments for stroke influence neuronal death in rat organotypic slice cultures subjected to oxygen glucose deprivation. Neuroscience 164(2):470–477PubMedCrossRefGoogle Scholar
  14. Horiuchi M, Itoh A, Pleasure D, Itoh T (2006) MEK-ERK signaling is involved in interferon-gamma-induced death of oligodendroglial progenitor cells. J Biol Chem 281(29):20095–20106PubMedCrossRefGoogle Scholar
  15. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H (2007) T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27(11):1798–1805PubMedCrossRefGoogle Scholar
  16. Jiang H, Meng F, Li W, Tong L, Qiao H, Sun X (2007) Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats. Surgery 141(1):32–40PubMedCrossRefGoogle Scholar
  17. Lambertsen KL, Gregersen R, Meldgaard M, Clausen BH, Heibol EK, Ladeby R, Knudsen J, Frandsen A, Owens T, Finsen B (2004) A role for interferon-gamma in focal cerebral ischemia in mice. J Neuropathol Exp Neurol 63(9):942–955PubMedGoogle Scholar
  18. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131(Pt 3):616–629PubMedCrossRefGoogle Scholar
  19. Leonardo CC, Hall AA, Collier LA, Ajmo CTJ, Willing AE, Pennypacker KR (2010) Human umbilical cord blood cell therapy blocks the morphological change and recruitment of CD-11b-expressing isolectin-binding proinflammatory cells after middle cerebral artery occlusion. J Neurosci Res 88(6):1213–1222PubMedGoogle Scholar
  20. Li HL, Kostulas N, Huang YM, Xiao BG, van der Meide P, Kostulas V, Giedraitas V, Link H (2001) IL-17 and IFN-gamma mRNA expression is increased in the brain and systemically after permanent middle cerebral artery occlusion in the rat. J Neuroimmunol 116(1):5–14PubMedCrossRefGoogle Scholar
  21. Li M, Li F, Luo C, Shan Y, Zhang L, Qian Z, Zhu G, Lin J, Feng H (2011) Immediate Splenectomy Decreases Mortality and Improves Cognitive Function of Rats After Severe Traumatic Brain Injury. J TraumaGoogle Scholar
  22. Liesz A, Hagmann S, Zschoche C, Adamek J, Zhou W, Sun L, Hug A, Zorn M, Dalpke A, Nawroth P, Veltkamp R (2009a) The spectrum of systemic immune alterations after murine focal ischemia: immunodepression versus immunomodulation. Stroke 40(8):2849–2858PubMedCrossRefGoogle Scholar
  23. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R (2009b) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–199PubMedCrossRefGoogle Scholar
  24. Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A, Sommer C, Dalpke AH, Veltkamp R (2011) Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134(Pt 3):704–720PubMedCrossRefGoogle Scholar
  25. Longa E, Weinstein P, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91PubMedCrossRefGoogle Scholar
  26. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–240PubMedGoogle Scholar
  27. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902PubMedCrossRefGoogle Scholar
  28. Newcomb JD, Ajmo CT Jr, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE (2006) Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant 15(3):213–223PubMedCrossRefGoogle Scholar
  29. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26(5):654–665PubMedCrossRefGoogle Scholar
  30. Okuaki Y, Miyazaki H, Zeniya M, Ishikawa T, Ohkawa Y, Tsuno S, Sakaguchi M, Hara M, Takahashi H, Toda G (1996) Splenectomy-reduced hepatic injury induced by ischemia/reperfusion in the rat. Liver 16(3):188–194PubMedGoogle Scholar
  31. Peterfalvi A, Molnar T, Banati M, Pusch G, Miko E, Bogar L, Pal J, Szereday L, Illes Z (2009) Impaired function of innate T lymphocytes and NK cells in the acute phase of ischemic stroke. Cerebrovasc Dis 28(5):490–498PubMedCrossRefGoogle Scholar
  32. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H (2010) CD4 + FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis 26(1):87–90PubMedCrossRefGoogle Scholar
  33. Rowe DD, Leonardo CC, Hall AA, Shahaduzzaman MD, Collier LA, Willing AE, Pennypacker KR (2010) Cord blood administration induces oligodendrocyte survival through alterations in gene expression. Brain Res 1366:172–188PubMedCrossRefGoogle Scholar
  34. Savas MC, Ozguner M, Ozguner IF, Delibas N (2003) Splenectomy attenuates intestinal ischemia-reperfusion-induced acute lung injury. J Pediatr Surg 38(10):1465–1470PubMedCrossRefGoogle Scholar
  35. Schmued LC, Albertson C, Slikker W Jr (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751(1):37–46PubMedCrossRefGoogle Scholar
  36. Yang Z, Watanabe M, Nishiyama A (2005) Optimization of oligodendrocyte progenitor cell culture method for enhanced survival. J Neurosci Meth 149(1):50–56CrossRefGoogle Scholar
  37. Yilmaz G, Arumugam TV, Stokes KY, Granger DN (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113(17):2105–2112PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hilary A. Seifert
    • 1
  • Christopher C. Leonardo
    • 1
  • Aaron A. Hall
    • 1
  • Derrick D. Rowe
    • 1
  • Lisa A. Collier
    • 1
  • Stanley A. Benkovic
    • 2
  • Alison E. Willing
    • 3
  • Keith R. Pennypacker
    • 1
  1. 1.Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, Morsani College of MedicineUniversity of South FloridaTampaUSA
  2. 2.NeuroScience AssociatesKnoxvilleUSA
  3. 3.Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of MedicineUniversity of South FloridaTampaUSA

Personalised recommendations