Metabolic Brain Disease

, Volume 27, Issue 1, pp 59–65

Glutamate carboxypeptidase II gene polymorphisms and neural tube defects in a high-risk Chinese population

  • Hua Xie
  • Jin Guo
  • Jianhua Wang
  • Fang Wang
  • Huizhi Zhao
  • Chi Liu
  • Li Wang
  • Xiaolin Lu
  • Lihua Wu
  • Yihua Bao
  • Jizhen Zou
  • Ting Zhang
  • Bo Niu
Original Paper

Abstract

Glutamate carboxypeptidase II (GCPII) catalyzes the hydrolysis of N-acetylaspartylglutamate into N-acetylaspartate and glutamate in the brain. Animal experiments suggested that GCPII plays an essential role in early embryonic development. Previous studies provided conflicting results on the effect of the GCPII rs61886492 C>T (or 1561C>T) polymorphism on NTDs. In the Lvliang area of Shanxi province, where the incidence of NTDs is the highest in China, a case–control study was conducted to investigate possible association between the GCPII rs61886492 and rs202676 polymorphisms and NTD risk. Results indicated all the case and control samples displayed the rs61886492 GG genotype. Although no significant differences in rs202676 genotype or allele frequencies were found between the NTD and control groups, the combined AG+GG genotype group was significantly associated with anencephaly (p = 0.03, OR = 2.11, 95% CI, 1.11–4.01), but not with spina bifida or encephalocele. Overall, the rs202676 A>G polymorphism is a potential risk factor for anencephaly. The results of this study suggest that phenotypic heterogeneity may exist among NTDs in this Chinese population.

Keywords

Neural tube defects GCPII Polymorphism Association study 

References

  1. Afman LA, Trijbels FJ, Blom HJ (2003) The H475Y polymorphism in the glutamate carboxypeptidase II gene increases plasma folate without affecting the risk for neural tube defects in humans. J Nutr 133(1):75–77PubMedGoogle Scholar
  2. Barber R, Shalat S, Hendricks K, Joggerst B, Larsen R, Suarez L, Finnell R (2000) Investigation of folate pathway gene polymorphisms and the incidence of neural tube defects in a Texas hispanic population. Mol Genet Metab 70(1):45–52. doi:10.1006/mgme.2000.2991 PubMedCrossRefGoogle Scholar
  3. Berki AC, O’Donovan MJ, Antal M (1995) Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord. J Comp Neurol 362(4):583–596. doi:10.1002/cne.903620411 PubMedCrossRefGoogle Scholar
  4. Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, Mulinare J, Zhao P, Wong LY, Gindler J, Hong SX, Correa A (1999) Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N Engl J Med 341(20):1485–1490. doi:10.1056/NEJM199911113412001 PubMedCrossRefGoogle Scholar
  5. Botto LD, Yang Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151(9):862–877PubMedGoogle Scholar
  6. Cameron HA, Hazel TG, McKay RD (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 36(2):287–306. doi:10.1002/(SICI)1097-4695(199808)36:2<287::AID-NEU13>3.0.CO;2-B PubMedCrossRefGoogle Scholar
  7. Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327(26):1832–1835. doi:10.1056/NEJM199212243272602 PubMedCrossRefGoogle Scholar
  8. Finnell RH, Gould A, Spiegelstein O (2003) Pathobiology and genetics of neural tube defects. Epilepsia 44(Suppl 3):14–23PubMedCrossRefGoogle Scholar
  9. Gu X, Lin L, Zheng X, Zhang T, Song X, Wang J, Li X, Li P, Chen G, Wu J, Wu L, Liu J (2007) High prevalence of NTDs in Shanxi Province: a combined epidemiological approach. Birth Defects Res A Clin Mol Teratol 79(10):702–707. doi:10.1002/bdra.20397 PubMedCrossRefGoogle Scholar
  10. Gueant-Rodriguez RM, Rendeli C, Namour B, Venuti L, Romano A, Anello G, Bosco P, Debard R, Gerard P, Viola M, Salvaggio E, Gueant JL (2003) Transcobalamin and methionine synthase reductase mutated polymorphisms aggravate the risk of neural tube defects in humans. Neurosci Lett 344(3):189–192PubMedCrossRefGoogle Scholar
  11. Han L, Picker JD, Schaevitz LR, Tsai G, Feng J, Jiang Z, Chu HC, Basu AC, Berger-Sweeney J, Coyle JT (2009) Phenotypic characterization of mice heterozygous for a null mutation of glutamate carboxypeptidase II. Synapse 63(8):625–635. doi:10.1002/syn.20649 PubMedCrossRefGoogle Scholar
  12. Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20(15):5764–5774PubMedGoogle Scholar
  13. KZ X (1989) The epidemiology of neural tube defects in China. Zhonghua Yi Xue Za ZhiGoogle Scholar
  14. Lauder JM, Han VK, Henderson P, Verdoorn T, Towle AC (1986) Prenatal ontogeny of the GABAergic system in the rat brain: an immunocytochemical study. Neuroscience 19(2):465–493PubMedCrossRefGoogle Scholar
  15. Li Z, Ren A, Zhang L, Ye R, Li S, Zheng J, Hong S, Wang T (2006) Extremely high prevalence of neural tube defects in a 4-county area in Shanxi Province, China. Birth Defects Res A Clin Mol Teratol 76(4):237–240. doi:10.1002/bdra.20248 PubMedCrossRefGoogle Scholar
  16. Liu H, Jin G, Wang H, Wu W, Liu Y, Qian J, Fan W, Ma H, Miao R, Hu Z, Sun W, Wang Y, Jin L, Wei Q, Shen H, Huang W, Lu D (2008) Association of polymorphisms in one-carbon metabolizing genes and lung cancer risk: a case–control study in Chinese population. Lung Cancer 61(1):21–29. doi:10.1016/j.lungcan.2007.12.001 PubMedCrossRefGoogle Scholar
  17. Luk KC, Kennedy TE, Sadikot AF (2003) Glutamate promotes proliferation of striatal neuronal progenitors by an NMDA receptor-mediated mechanism. J Neurosci 23(6):2239–2250PubMedGoogle Scholar
  18. Nakamichi N (2011) Functional glutamate signaling in neural progenitor cells. Yakugaku Zasshi 131(9):1311–1316PubMedCrossRefGoogle Scholar
  19. Nakamichi N, Takarada T, Yoneda Y (2009) Neurogenesis mediated by gamma-aminobutyric acid and glutamate signaling. J Pharmacol Sci 110(2):133–149PubMedCrossRefGoogle Scholar
  20. Nguyen L, Rigo JM, Rocher V, Belachew S, Malgrange B, Rogister B, Leprince P, Moonen G (2001) Neurotransmitters as early signals for central nervous system development. Cell Tissue Res 305(2):187–202PubMedCrossRefGoogle Scholar
  21. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084 PubMedCrossRefGoogle Scholar
  22. Powrozek TA, Sari Y, Singh RP, Zhou FC (2004) Neurotransmitters and substances of abuse: effects on adult neurogenesis. Curr Neurovasc Res 1(3):251–260PubMedCrossRefGoogle Scholar
  23. Relton CL, Wilding CS, Jonas PA, Lynch SA, Tawn EJ, Burn J (2003) Genetic susceptibility to neural tube defect pregnancy varies with offspring phenotype. Clin Genet 64(5):424–428PubMedCrossRefGoogle Scholar
  24. Robinson MB, Blakely RD, Couto R, Coyle JT (1987) Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate. Identification and characterization of a novel N-acetylated alpha-linked acidic dipeptidase activity from rat brain. J Biol Chem 262(30):14498–14506PubMedGoogle Scholar
  25. Root CM, Velazquez-Ulloa NA, Monsalve GC, Minakova E, Spitzer NC (2008) Embryonically expressed GABA and glutamate drive electrical activity regulating neurotransmitter specification. J Neurosci 28(18):4777–4784. doi:10.1523/JNEUROSCI.4873-07.2008 PubMedCrossRefGoogle Scholar
  26. Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39 (Database issue):D392-401. doi:10.1093/nar/gkq1021
  27. Schlett K (2006) Glutamate as a modulator of embryonic and adult neurogenesis. Curr Top Med Chem 6(10):949–960PubMedCrossRefGoogle Scholar
  28. Tsai G, Dunham KS, Drager U, Grier A, Anderson C, Collura J, Coyle JT (2003) Early embryonic death of glutamate carboxypeptidase II (NAALADase) homozygous mutants. Synapse 50(4):285–292. doi:10.1002/syn.10263 PubMedCrossRefGoogle Scholar
  29. van den Pol AN, Obrietan K, Cao V, Trombley PQ (1995) Embryonic hypothalamic expression of functional glutamate receptors. Neuroscience 67(2):419–439PubMedCrossRefGoogle Scholar
  30. Zhang XM, Huang GW, Tian ZH, Ren DL, Wilson JX (2009a) Folate deficiency induces neural stem cell apoptosis by increasing homocysteine in vitro. J Clin Biochem Nutr 45(1):14–19. doi:10.3164/jcbn.08-223 PubMedCrossRefGoogle Scholar
  31. Zhang XM, Huang GW, Tian ZH, Ren DL, Wilson JX (2009b) Folate stimulates ERK1/2 phosphorylation and cell proliferation in fetal neural stem cells. Nutr Neurosci 12(5):226–232. doi:10.1179/147683009X423418 PubMedCrossRefGoogle Scholar
  32. Zhou J, Neale JH, Pomper MG, Kozikowski AP (2005) NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nat Rev Drug Discov 4(12):1015–1026. doi:10.1038/nrd1903 PubMedCrossRefGoogle Scholar
  33. Zhu H, Wicker NJ, Shaw GM, Lammer EJ, Hendricks K, Suarez L, Canfield M, Finnell RH (2003) Homocysteine remethylation enzyme polymorphisms and increased risks for neural tube defects. Mol Genet Metab 78(3):216–221PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hua Xie
    • 1
  • Jin Guo
    • 1
  • Jianhua Wang
    • 1
  • Fang Wang
    • 1
  • Huizhi Zhao
    • 1
  • Chi Liu
    • 1
  • Li Wang
    • 1
  • Xiaolin Lu
    • 1
  • Lihua Wu
    • 1
  • Yihua Bao
    • 1
  • Jizhen Zou
    • 1
  • Ting Zhang
    • 1
  • Bo Niu
    • 1
  1. 1.Capital Institute of PediatricsBeijingPeople’s Republic of China

Personalised recommendations