Metabolic Brain Disease

, Volume 25, Issue 1, pp 3–9 | Cite as

Evidence for oxidative/nitrosative stress in the pathogenesis of hepatic encephalopathy

  • Chantal Bemeur
  • Paul Desjardins
  • Roger F. Butterworth
Original Paper


Hepatic encephalopathy (HE) is a serious complication of liver failure. HE manifests as a series of neuropsychiatric and neuromuscular symptoms including personality changes, sleep abnormalities, asterixis and muscle rigidity progressing through stupor to coma. The pathophysiologic basis of HE remains unclear. There is general agreement that ammonia plays a key role. In recent years, it has been suggested that oxidative/nitrosative stress constitutes part of the pathophysiologic cascade in HE. Direct evidence for oxidative/nitrosative stress in the pathogenesis of HE has been demonstrated in experimental animal models of acute or chronic liver failure. However, evidence from studies in HE patients is limited. This review summarizes this evidence for a role of oxidative/nitrosative stress in relation to ammonia toxicity and to the pathogenesis of HE.


Hepatic encephalopathy Oxidative stress Antioxidants Liver failure 



hepatic encephalopathy


acute liver failure


endothelial nitric oxide synthase


heme oxygenase-1




superoxide dismutase


mitochondrial permeability transition


permeability transition pore




inducible nitric oxide synthase


neuronal nitric oxide synthase


n-methyl-d-aspartic acid receptors


glutamine synthetase


methionine sulfoximine


  1. Ahboucha S, Pomier-Layrargues G, Mamer O, Butterworth RF (2006) Increased levels of pregnenolone and its neuroactive metabolite allopregnanolone in autopsied brain tissue from cirrhotic patients who died in hepatic coma. Neurochem Int 49:372–378CrossRefPubMedGoogle Scholar
  2. Asanuma M, Nishibayashi-Asanuma S, Miyazaki I, Kohno M, Ogawa N (2001) Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem 76:1895–1904CrossRefPubMedGoogle Scholar
  3. Bai G, Rama Rao KV, Murthy CR, Panickar KS, Jayakumar AR, Norenberg MD (2001) Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J Neurosci Res 66:981–991CrossRefPubMedGoogle Scholar
  4. Bemeur C, Ste-Marie L, Desjardins P, Vachon L, Butterworth RF, Hazell AS, Montgomery J (2005) Dehydrascorbic acid normalizes several markers of oxidative stress and inflammation in acute hyperglycemic focal cerebral ischemia in the rat. Neurochem Int 46:399–407CrossRefPubMedGoogle Scholar
  5. Bemeur C, Jiang W, Desjardins P, Butterworth RF (2009) Mild hypothermia attenuates oxidative/nitrosative stress and cytotoxic brain edema in experimental acute liver failure. XXIVth International Symposium on Cerebral Blood Flow, Metabolism and Function & IXth International Conference on Quantification of Brain Function with PET, Chicago, IL, USAGoogle Scholar
  6. Bemeur C, Vaquero J, Desjardins P, Butterworth RF (2010a) N-Acetylcysteine attenuates cerebral complications of non-acetaminophen-induced acute liver failure in mice: antioxidant and anti-inflammatory mechanisms. Metab Brain Dis (in press)Google Scholar
  7. Bemeur C, Desjardins P, Butterworth RF (2010b) Antioxidant and anti-inflammatory effects of mild hypothermia in the attenuation of liver injury due to azoxymethane toxicity in the mouse. Metab Brain Dis (in press)Google Scholar
  8. Bruck R, Aeed H, Shirin H, Matas Z, Zaidel L, Avni Y, Halpern Z (1999) The hydroxyl radical scavengers dimethylsulfoxide and dimethylthiourea protect rats against thioacetamide-induced fulminant hepatic failure. J Hepatol 31:27–38CrossRefPubMedGoogle Scholar
  9. Brunk UT (1989) On the origin of lipofuscin; the iron content of residual bodies, and the relation of these organelles to the lysosomal vacuome. A study on cultured human glial cells. Adv Exp Med Biol 266:313–320PubMedGoogle Scholar
  10. Brusilow SW, Valle DL, Batshaw M (1979) New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet 2:452–254CrossRefPubMedGoogle Scholar
  11. Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227CrossRefPubMedGoogle Scholar
  12. Chung C, Gottstein J, Blei AT (2001) Indomethacin prevents the development of experimental ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 34:249–254CrossRefPubMedGoogle Scholar
  13. Clemmesen JO, Hansen BA, Larsen FS (1997) Indomethacin normalizes intracranial pressure in acute liver failure: a twenty-three-year-old woman treated with indomethacin. Hepatology 26:1423–1425CrossRefPubMedGoogle Scholar
  14. Cordoba J, Crespin J, Gottstein J, Blei AT (1999) Mild hypothermia modifies ammonia- induced brain edema in rats after portacaval anastomosis. Gastroenterology 116:686–693CrossRefPubMedGoogle Scholar
  15. Desjardins P, Butterworth RF (2002) The “peripheral-type” benzodiazepine (omega 3) receptor in hyperammonemic disorders. Neurochem Int 41:109–114CrossRefPubMedGoogle Scholar
  16. Globus MY, Alonso O, Dietrich WD, Busto R, Ginsberg MD (1995) Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem 65:1704–1711PubMedGoogle Scholar
  17. Görg B, Foster N, Reinehr R, Bidmon HJ, Höngen A, Häussinger D, Schliess F (2003) Benzodiazepine-induced protein tyrosine nitration in rat astrocytes. Hepatology 37:334–342CrossRefPubMedGoogle Scholar
  18. Görg B, Qvartskhava N, Voss P, Grune T, Häussinger D, Schliess F (2007) Reversible inhibition of mammalian glutamine synthetase by tyrosine nitration. FEBS Lett 581:84–90CrossRefPubMedGoogle Scholar
  19. Guerrini VH (1994) Effect of antioxidants on ammonia induced CNS-renal pathobiology in sheep. Free Radic Res 21:35–43CrossRefPubMedGoogle Scholar
  20. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623CrossRefPubMedGoogle Scholar
  21. Harrison PM, Wendon JA, Gimson AE, Alexander GJ, Williams R (1991) Improvement by acetylcysteine of hemodynamics and oxygen transport in fulminant hepatic failure. N Engl J Med 324:1852–1857PubMedCrossRefGoogle Scholar
  22. Haseloff RF, Blasig IE, Meffert H, Ebert B (1990) Hydroxyl radical scavenging and antipsoriatic activity of benzoic acid derivatives. Free Radic Biol Med 9:111–115CrossRefPubMedGoogle Scholar
  23. Hawkins RA, Jessy J, Mans AM, De Joseph MR (1993) Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy. J Neurochem 60:1000–1006CrossRefPubMedGoogle Scholar
  24. Hermenegildo C, Marcaida G, Montoliu C, Grisolia S, Minana MD, Felipo V (1996) NMDA receptor antagonists prevent acute ammonia toxicity in mice. Neurochem Res 21:1237–1244CrossRefPubMedGoogle Scholar
  25. Hermenegildo C, Monfort P, Felipo V (2000) Activation of N-methyl-D-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 31:709–715CrossRefPubMedGoogle Scholar
  26. Hernández R, Martinez-Lara E, Del Moral ML, Blanco S, Cañuelo A, Siles E, Esteban FJ, Pedrosa JA, Peinado MA (2004) Upregulation of endothelial nitric oxide synthase maintains nitric oxide production in the cerebellum of thioacetamide cirrhotic rats. Neuroscience 126:879–887CrossRefPubMedGoogle Scholar
  27. Hilgier W, Anderzhanova E, Oja SS, Saransaari P, Albrecht J (2003) Taurine reduces ammonia- and N-methyl-D-aspartate-induced accumulation of cyclic GMP and hydroxyl radicals in microdialysates of the rat striatum. Eur J Pharmacol 468:21–25CrossRefPubMedGoogle Scholar
  28. Jalan R, Olde Damink SW, Deutz NE, Lee A, Hayes PC (1999) Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure. Lancet 354:1164–1168CrossRefPubMedGoogle Scholar
  29. Jalan R, Olde Damink SW, Deutz NE, Davies NA, Garden OJ, Machavan KK, Hayes PC, Lee A (2003) Moderate hypothermia prevents cerebral hyperemia and increase in intracranial pressure in patients undergoing liver transplantation for acute liver failure. Transplantation 75:2034–2039CrossRefPubMedGoogle Scholar
  30. Jiang W, Desjardins P, Butterworth RF (2009a) Hypothermia attenuates oxidative/nitrosative stress, encephalopathy and brain edema in acute (ischemic) liver failure. Neurochem Int 55:124–128CrossRefPubMedGoogle Scholar
  31. Jiang W, Desjardins P, Butterworth RF (2009b) Minocycline attenuates oxidative/nitrosative stress and cerebral complications of acute liver failure in rats. Neurochem Int 55:601–605CrossRefPubMedGoogle Scholar
  32. Jones AL (1998) Mechanism of action and value of n-acetylcysteine in the treatment of early and late acetaminophen poisoning: a critical review. J Toxicol Clin Toxicol 36:277–285CrossRefPubMedGoogle Scholar
  33. Kosenko E, Kaminsky Y, Grau E, Miñana MD, Marcaida G, Grisolía S, Felipo V (1994) Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+, K(+)-ATPase. J Neurochem 63:2172–2178PubMedCrossRefGoogle Scholar
  34. Kosenko E, Kaminsky Y, Kaminsky A, Valencia M, Lee L, Hermenegildo C, Felipo V (1997) Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic Res 27:637–644CrossRefPubMedGoogle Scholar
  35. Kosenko E, Kaminski Y, Lopata O, Muravyoy N, Felipo V (1999) Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication. Free Radic Biol Med 26:1369–1374CrossRefPubMedGoogle Scholar
  36. Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V (2003) Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 98:193–200CrossRefGoogle Scholar
  37. Kosenko E, Montoliu C, Giordano G, Kaminsky Y, Venediktova N, Buryanov Y, Felipo V (2004) Acute ammonia intoxication induces an NMDA receptor-mediated increase in poly(ADP-ribose) polymerase level and NAD metabolism in nuclei of rat brain cells. J Neurochem 89:1101–1110CrossRefPubMedGoogle Scholar
  38. Laroux FS, Pavlick KP, Hines IN, Kawachi S, Harada H, Bharwani S, Hoffman JM, Grisham MB (2001) Role of nitric oxide in inflammation. Acta Physiol Scand 173:113–118CrossRefPubMedGoogle Scholar
  39. Larsen FS, Gottstein J, Blei AT (2001) Cerebral hyperemia and nitric oxide synthase in rats with ammonia-induced brain edema. J Hepatol 34:548–554CrossRefPubMedGoogle Scholar
  40. Marcaida G, Felipo V, Hermenegildo C, Manama MD, Grisolia S (1992) Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett 296:67–68CrossRefPubMedGoogle Scholar
  41. Master S, Gottstein J, Blei AT (1999) Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 30:876–880CrossRefPubMedGoogle Scholar
  42. Miller TJ, Phelka AD, Tjalkens RB, Dethloff LA, Philbert MA (2003) CI-1010 induced opening of the mitochondrial permeability transition pore precedes oxidative stress and apoptosis in SY5Y neuroblastoma cells. Brain Res 963:43–56CrossRefPubMedGoogle Scholar
  43. Mousseau DD, Butterworth RF (1994) Current theories on the pathogenesis of hepatic encephalopathy. Proc Soc Exp Biol Med 206:329–344PubMedGoogle Scholar
  44. Murthy CR, Rama Rao KV, Bai G, Norenberg MD (2001) Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 66:282–288CrossRefPubMedGoogle Scholar
  45. Norenberg MD (1981) The astrocyte in liver disease. Adv Cell Neurobiol 2:303–352Google Scholar
  46. Norenberg MD, Huo Z, Neary JT, Roig-Cantesano A (1997) The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: relation to energy metabolism and glutamatergic neurotransmission. Glia 21:124–133CrossRefPubMedGoogle Scholar
  47. Norenberg MD, Jayakumar AR, Rama Rao KV, Panickar KS (2007) New concepts in the mechanism of ammonia-induced astrocyte swelling. Metab Brain Dis 22:219–234CrossRefPubMedGoogle Scholar
  48. O’Connor JE, Costell M (1990) New roles of carnitine metabolism in ammonia cytotoxicity. Adv Exp Med Biol 272:183–195PubMedGoogle Scholar
  49. Rama Rao KV, Jayakumar AR, Norenberg MD (2003) Ammonia neurotoxicity: role of the mitochondrial permeability transition. Metab Brain Dis 18:113–127CrossRefPubMedGoogle Scholar
  50. Rama Rao KV, Jayakumar AR, Norenberg MD (2005) Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. Neurochem Int 47:31–38CrossRefPubMedGoogle Scholar
  51. Rao VL (2002) Nitric oxide in hepatic encephalopathy and hyperammonemia. Neurochem Int 41:161–170CrossRefPubMedGoogle Scholar
  52. Rao KV, Norenberg MD (2001) Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab Brain Dis 16:67–78CrossRefPubMedGoogle Scholar
  53. Rao VL, Audet RM, Butterworth RF (1995) Increased nitric oxide synthase activities and L-[3H]arginine uptake in brain following portacaval anastomosis. J Neurochem 65:677–678PubMedGoogle Scholar
  54. Reddy PV, Murthy CR, Reddanna P (2004) Fulminant hepatic failure induced oxidative stress in nonsynaptic mitochondria of cerebral cortex in rats. Neurosci Lett 368:15–20CrossRefPubMedGoogle Scholar
  55. Rose C, Michalak A, Pannunzio M, Chatauret N, Rambaldi A, Butterworth RF (2000) Mild hypothermia delays the onset of coma and prevents brain edema and extracellular brain glutamate accumulation in rats with acute liver failure. Hepatology 31:872–877CrossRefPubMedGoogle Scholar
  56. Sathyasaikumar KV, Swapna I, Reddy PV, Murthy ChR, Dutta Gupta A, Senthilkumaran B, Reddanna P (2007) Fulminant hepatic failure in rats induces oxidative stress differentially in cerebral cortex, cerebellum and pons medulla. Neurochem Res 32:517–524CrossRefPubMedGoogle Scholar
  57. Sawara K, Desjardins P, Chatauret N, Kato A, Suzuki K, Butterworth RF (2009) Alterations in expression of genes coding for proteins of the neurovascular unit in ischemic liver failure. Neurochem Int 55:119–123CrossRefPubMedGoogle Scholar
  58. Schenker S, Warren KS (1962) Effect of temperature variation on toxicity and metabolism of ammonia in mice. J Lab Clin Med 60:291–301PubMedGoogle Scholar
  59. Schliess F, Görg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A, Butterworth RF, Zilles K, Häussinger D (2002) Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J 16:739–741PubMedGoogle Scholar
  60. Schliess F, Görg B, Häussinger D (2006) Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm. Biol Chem 387:1363–1370CrossRefPubMedGoogle Scholar
  61. Song G, Dhodda VK, Blei AT, Dempsey RJ, Rao VL (2002) GeneChip analysis shows altered mRNA expression of transcripts of neurotransmitter and signal transduction pathways in the cerebral cortex of portacaval shunted rats. J Neurosci Res 68:730–737CrossRefPubMedGoogle Scholar
  62. Suárez I, Bodega G, Rubino M, Felipo V, Fernández B (2005) Neuronal and inducible nitric oxide synthase expression in the rat cerebellum following portacaval anastomosis. Brain Res 1047:205–213CrossRefPubMedGoogle Scholar
  63. Suárez I, Bodega G, Arilla E, Felipo V, Fernández B (2006) The expression of nNOS, iNOS and nitrotyrosine is increased in the rat cerebral cortex in experimental hepatic encephalopathy. Neuropathol Appl Neurobiol 32:594–604CrossRefPubMedGoogle Scholar
  64. Sushma S, Dasarathy S, Tandon RK, Jain S, Gupta S, Bhist MS (1992) Sodium benzoate in the treatment of acute hepatic encephalopathy: a double-blind randomized trial. Hepatology 16:138–144CrossRefPubMedGoogle Scholar
  65. Szerb JC, Butterworth RF (1992) Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog Neurobiol 39:135–153CrossRefPubMedGoogle Scholar
  66. Takahashi H, Koehler RC, Brusilow SW, Traystman RJ (1991) Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 261:H825–H829PubMedGoogle Scholar
  67. Traber P, DalCanto M, Ganger D, Blei AT (1989) Effect of body temperature on brain edema and encephalopathy in the rat after hepatic devascularization. Gastroenterology 96:885–891PubMedGoogle Scholar
  68. Túnez I, Muñoz MC, Medina FJ, Salcedo M, Feijóo M, Montilla P (2007) Comparison of melatonin, vitamin E and L-carnitine in the treatment of neuro- and hepatoxicity induced by thioacetamide. Cell Biochem Funct 25:119–127CrossRefPubMedGoogle Scholar
  69. Upreti KK, Das M, Khanna SK (1991) Role of antioxidants and scavengers on argemone oil-induced toxicity in rats. Arch Environ Contam Toxicol 20:531–537CrossRefPubMedGoogle Scholar
  70. Wendon JA, Harrison PM, Keays R, Williams R (1994) Cerebral blood flow and metabolism in fulminant liver failure. Hepatology 19:1407–1413CrossRefPubMedGoogle Scholar
  71. Zarros A, Theocharis S, Skandali N, Tsakiris S (2008) Effects of fulminant hepatic encephalopathy on the adult rat brain antioxidant status and the activities of acetylcholinesterase, (Na(+), K(+))- and Mg (2+)-ATPase: comparison of the enzymes’ response to in vitro treatment with ammonia. Metab Brain Dis 23:255–264CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chantal Bemeur
    • 1
  • Paul Desjardins
    • 1
  • Roger F. Butterworth
    • 1
    • 2
  1. 1.Neuroscience Research UnitHôpital Saint-Luc (CHUM) University of MontrealMontrealCanada
  2. 2.Neuroscience Research UnitSt-Luc Hospital (CHUM), University of MontrealMontrealCanada

Personalised recommendations