Metabolic Brain Disease

, 24:271

Effects of 1,4-butanediol administration on oxidative stress in rat brain: Study of the neurotoxicity of γ-hydroxybutyric acid in vivo

  • Ângela M. Sgaravatti
  • Alessandra S. Magnusson
  • Amanda S. Oliveira
  • Caroline P. Mescka
  • Fernanda Zanin
  • Mirian B. Sgarbi
  • Carolina D. Pederzolli
  • Angela T. S. Wyse
  • Clóvis M. D. Wannmacher
  • Moacir Wajner
  • Carlos S. Dutra-Filho
Original Paper

Abstract

γ-Hydroxybutyric acid (GHB) is a naturally occurring compound in the central nervous system (CNS) whose tissue concentration are highly increased in the neurometabolic-inherited deficiency of succinic semialdehyde dehydrogenase (SSADH) activity or due to intoxication. SSADH deficiency is biochemically characterized by increased concentrations of GHB in tissues, cerebrospinal fluid, blood and urine of affected patients. Clinical manifestations are variable and include retardation of mental, motor, and language development along with other neurological symptoms, such as hypotonia, ataxia and seizures, whose underlying mechanisms are practically unknown. The precursor of GHB, 1,4-butanediol (1,4-BD) has been used to study the mechanisms of in vivo GHB neurotoxicity. Therefore, in the present work, the effect of acute administration of 20 or 120 mg/Kg 1,4-BD was investigated on various parameters of oxidative stress, such as spontaneous chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total antioxidant reactivity (TAR), sulfhydryl and protein carbonyl contents, as well as the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in homogenates from cerebral cortex of 14-day-old Wistar rats. Acute administration of 120 mg/Kg 1,4-BD significantly increased spontaneous chemiluminescence and TBA-RS levels, while TAR measurement was markedly diminished, whereas injection of a lower dose (20 mg/Kg) did not change the parameters examined. Other parameters of oxidative stress evaluated were not affected by administration of 1,4-BD. These results indicate that 1,4-BD induces in vivo oxidative stress by stimulating lipid peroxidation and decreasing the non-enzymatic antioxidant defenses in cerebral cortex of young rats. If these effects also occur in humans, it is possible that they might contribute to the brain damage found in SSADH-deficient patients and possibly in individuals intoxicated by GHB or its prodrugs (γ-butyrolactone or 1,4-BD).

References

  1. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  2. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145PubMedCrossRefGoogle Scholar
  3. Benavides J, Rumigny JF, Bourguignon JJ, Cash C, Wermuth CG, Mandel P, Vincendon G, Maitre M (1982) High affinity binding site for γ-hydroxybutyric acid in rat brain. Life Sci 30:953–961PubMedCrossRefGoogle Scholar
  4. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137PubMedCrossRefGoogle Scholar
  5. Carai MA, Colombo G, Reali R, Serra S, Mocci I, Castelli MP et al (2002) Central effects of 1, 4-butanediol are mediated by GABA(B) receptors via its conversion into gamma-hydroxybutyric acid. Eur J Pharmacol 441:157–163PubMedCrossRefGoogle Scholar
  6. Carter LP, Koek W, France CP (2006) Lack of effects of GHB precursors GBL and 1, 4-BD following i.c.v. administration in rats. Eur J Neurosci 24:2595–2600PubMedCrossRefGoogle Scholar
  7. Cash CD (1994) Gammahydroxybutyrate: an overview of the pros and cons for it being a neurotransmitter and/or a useful therapeutic agent. Neurosci Biobehav Rev 18:291–304PubMedCrossRefGoogle Scholar
  8. de Fiebre CM, de Fiebre NE, Coleman SL, Forster MJ (2004) Comparison of the actions of gamma-butyrolactone and 1, 4-butanediol in Swiss-Webster mice. Pharmacol Biochem Behav 77:705–710PubMedCrossRefGoogle Scholar
  9. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421PubMedCrossRefGoogle Scholar
  10. Gibson KM, Jakobs C (2001) Disorders of beta- and gamma-amino acids in free and peptide-linked forms. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2079–2105Google Scholar
  11. Gibson KM, Christensen E, Jakobs C, Fowler B, Clarke MA, Hammersen G et al (1997) The clinical phenotype of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria): case reports of 23 new patients. Pediatrics 99:567–574PubMedCrossRefGoogle Scholar
  12. Gibson KM, Gupta M, Pearl PL, Tuchman M, Vezina LG, Snead OCIII, Smit LME, Jakobs C (2003) Significant behavioral disturbances in succinic semialdehyde dehydrogenase (SSADH) deficiency (gamma-hydroxybutyric aciduria). Biol Psychiatry 54:763–768PubMedCrossRefGoogle Scholar
  13. Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 14:644–653PubMedGoogle Scholar
  14. Gupta M, Hogema BM, Grompe M, Bottiglieri TG, Concas A, Biggio G, Sogliano C, Rigamonti AE, Pearl PL, Snead OCIII, Jakobs C, Gibson KM (2003) Murine succinate semialdehyde dehydrogenase deficiency. Ann Neurol 54:S81–S90PubMedCrossRefGoogle Scholar
  15. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716PubMedCrossRefGoogle Scholar
  16. Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 268–337Google Scholar
  17. Jakobs C, Jaeken J, Gibson KM (1993) Inherited disorders of GABA metabolism. J Inherit Metab Dis 16:704–715PubMedCrossRefGoogle Scholar
  18. Jansen EE, Verhoeven NM, Jakobs C et al (2006) Increased guanidino species in murine and human succinate semialdehyde dehydrogenase (SSADH) deficiency. Biochim Biophys Acta 1762:494–498PubMedGoogle Scholar
  19. Kaufman EE, Porrino LJ, Nelson T (1990) Pyretic action of low doses of gammahydroxybutyrate in rats. Biochem Pharmacol 40:2637–2640PubMedCrossRefGoogle Scholar
  20. Kaufman EE, Nelson T (1991) An overview of γ-hydroxybutyrate catabolism: the role of the cytosolic NADP+-dependent oxidoreductase EC 1.1.1.19 and of a mitochondrial hydroxyacid-oxoacid transhydrogenase in the initial, rate-limiting step in this pathway. Neurochem Res 16:965–974PubMedCrossRefGoogle Scholar
  21. Kaufman EE, Nelson T, Fales HM, Levin DM (1998) Isolation and characterization of a hydroxyacid-oxoacid transhydrogenase from rat kidney mitochondria. J Biol Chem 263:16872–16879Google Scholar
  22. Latini A, Scussiato K, Rosa RB et al (2003) D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats. Eur J Neurosci 17:2017–2022PubMedCrossRefGoogle Scholar
  23. Latini A, Scussiato K, Leipnitz G, Gibson KM, Wajner M (2007) Evidence for oxidative stress in tissues derived from succinate semialdehyde dehydrogenase-deficient mice. J Inherit Metab Dis 30:800–810PubMedCrossRefGoogle Scholar
  24. Lissi E, Caceres T, Videla LA (1986) Visible chemiluminescence from rat homogenates undergoing autoxidation. I. Effect of additives and products acummulation. J Free Radic Biol Med 2:63–69PubMedCrossRefGoogle Scholar
  25. Lissi E, Salim-Hanna M, Pascual C, Del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158PubMedCrossRefGoogle Scholar
  26. Llesuy SF, Milei J, Molina H, Boveris A, Milei S (1985) Comparison of lipid peroxidation and myocardial damage induced by adriamycin and 4′-epiadriamycin in mice. Tumori 71:241–249PubMedGoogle Scholar
  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  28. Maitre M (1997) The γ-hydroxybutyrate signalling system in brain: organization and functional implications. Prog Neurobiol 51:337–361PubMedCrossRefGoogle Scholar
  29. Maitre M, Andriamampandry C, Kemmel V, Schmidt C, Hodé Y, Hechler V, Gobaille S (2000) Gamma-hydroxybutyric acid as a signaling molecule in brain. Alcohol 20:277–283PubMedCrossRefGoogle Scholar
  30. Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC, Boca Raton, pp 243–247Google Scholar
  31. Murphy TC, Amarnath V, Gibson KM, Picklo MJ Sr (2003) Oxidation of 4-hydroxy-2-nonenal by succinic semialdehyde dehydrogenase (ALDH5A). J Neurochem 86:298–305PubMedCrossRefGoogle Scholar
  32. Nguyen E, Picklo MJ (2003) Inhibition of succinic semialdehyde dehydrogenase activity by alkenal products of lipid peroxidation. Biochim Biophys Acta 1637:107–112PubMedGoogle Scholar
  33. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358PubMedCrossRefGoogle Scholar
  34. Pearl PL, Novotny EJ, Acosta MT, Jakobs C, Gibson KM (2003) Succinic semialdehyde dehydrogenase deficiency in children and adults. Ann Neurol 54:S73–S80PubMedCrossRefGoogle Scholar
  35. Poldrugo F, Snead OC (1984) 1, 4-Butanediol, γ-hydroxybutyric acid and ethanol: relationships and interactions. Neuropharmacology 23:109–113PubMedCrossRefGoogle Scholar
  36. Quang LS, Shannon MW, Woolf AD, Desai MC, Maher TJ (2002) Pretreatment of CD-1 mice with 4-methylpyrazole blocks toxicity from the gamma-hydroxybutyrate precursor, 1, 4-butanediol. Life Sci 71:771–778PubMedCrossRefGoogle Scholar
  37. Reznick AZ, Packer L (1994) Oxidative damage to proteins: Spectrophotometric method for carbonyl assay. Meth Enzymol 233:357–363PubMedCrossRefGoogle Scholar
  38. Roth RH, Giarman NJ (1968) Evidence that central nervous system depression by 1, 4-butanediol is mediated through a metabolite, gamma-hydroxybutyrate. Biochem Pharmacol 17:735–739PubMedCrossRefGoogle Scholar
  39. Sauer SW, Kölker S, Hoffmann GF, Ten Brink HJ, Jakobs C, Gibson KM, Okun JG (2007) Enzymatic and metabolic evidence for a region specific mitochondrial dysfunction in brains of murine succinic semialdehyde dehydrogenase deficiency (Aldh5a1-/- mice). Neurochem Int 50:653–659PubMedCrossRefGoogle Scholar
  40. Sgaravatti AM, Sgarbi MB, Testa CG, Durigon K, Pederzolli CD, Prestes CC, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2007) Gamma-hydroxybutyric acid induces oxidative stress in cerebral cortex of young rats. Neurochem Int 50:564–570PubMedCrossRefGoogle Scholar
  41. Shannon M, Quang LS (2000) Gamma-hydroxybutyrate, gamma-butyrolactone, and 1, 4-butanediol: a case report and review of the literature. Pediatr Emerg Care 16:435–440PubMedCrossRefGoogle Scholar
  42. Silva AR, Ruschel C, Helegda C, Brusque AM, Wannmacher CMD, Wajner M, Dutra-Filho CS (1999) Inhibition of rat brain lipid synthesis in vitro by 4-hydroxybutyrir acid. Metab Brain Dis 14:157–164PubMedCrossRefGoogle Scholar
  43. Snead OC, Gibson KM (2005) Gamma-hydroxybutyric acid. N Engl J Med 352:2721–2732PubMedCrossRefGoogle Scholar
  44. Snead OC, Liu CC (1984) Gamma-hydroxybutyric acid binding sites in rat and human brain synaptosomal membranes. Biochem Pharmacol 33:2587–2590PubMedCrossRefGoogle Scholar
  45. Snead OC, Furner R, Liu CC (1989) In vivo conversion of γ-aminobutyric acid and 1, 4-butanediol to γ-hydroxybutyric acid in rat brain. Biochem Pharmacol 38:4375–4380PubMedCrossRefGoogle Scholar
  46. Struys EA, Verhoeven NM, Jansen EE, Ten Brink HJ, Gupta M, Burlingame TG, Quang LS, Maher T, Rinaldo P, Snead OC, Goodwin AK, Weerts EM, Brown PR, Murphy TC, Picklo MJ, Jakobs C, Gibson KM (2006a) Metabolism of gamma-hydroxybutyrate to d-2-hydroxyglutarate in mammals: further evidence for d-2-hydroxyglutarate transhydrogenase. Metabolism 55:353–358PubMedCrossRefGoogle Scholar
  47. Struys EA, Verhoeven NM, Salomons GS, Berthelot J, Vianay-Saban C, Chabrier S, Thomas JA, Tsai AC, Gibson KM, Jakobs C (2006b) D-2-hydroxyglutaric aciduria in three patients with proven SSADH deficiency: genetic coincidence or a related biochemical epiphenomenon? Mol Genet Metab 88:53–57PubMedCrossRefGoogle Scholar
  48. Sulzer D, Zecca L (2000) Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res 1:181–195PubMedCrossRefGoogle Scholar
  49. Teter CJ, Guthrie SK (2001) A comprehensive review of MDMA and GHB: two common club drugs. Pharmacotherapy 21:1486–1513PubMedCrossRefGoogle Scholar
  50. Tunnicliff G (1992) Significance of γ-hydroxybutyric acid in the brain. Gen Pharmacol 23:1027–1034PubMedGoogle Scholar
  51. Wendel A (1981) Glutathione peroxidase. Meth Enzymol 77:325–333PubMedCrossRefGoogle Scholar
  52. Wong CGT, Gibson KM, Snead OCIII (2004) From the street to the brain: neurobiology of the recreational drug γ-hydroxybutyric acid. Trends Pharmacol Sci 25:29–34PubMedCrossRefGoogle Scholar
  53. Zugno AI, Franzon R, Chiarani F, Bavaresco CS, Wannmacher CM, Wajner M, Wyse AT (2004) Evaluation of the mechanism underlying the inhibitory effect of guanidinoacetate on brain Na+, K+-ATPase activity. Int J Dev Neurosci 22:191–196PubMedCrossRefGoogle Scholar
  54. Zugno AI, Scherer EB, Schuck PF, Oliveira DL, Wofchuck S, Wannmacher CM, Wajner M, Wyse AT (2006) Intrastriatal administration of guanidinoacetate inhibits Na+, K+-ATPase and creatine kinase activities in rat striatum. Metab Brain Dis 21:41–50PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ângela M. Sgaravatti
    • 2
  • Alessandra S. Magnusson
    • 1
  • Amanda S. Oliveira
    • 1
  • Caroline P. Mescka
    • 1
  • Fernanda Zanin
    • 1
  • Mirian B. Sgarbi
    • 1
  • Carolina D. Pederzolli
    • 2
  • Angela T. S. Wyse
    • 1
    • 2
  • Clóvis M. D. Wannmacher
    • 1
    • 2
  • Moacir Wajner
    • 1
    • 2
  • Carlos S. Dutra-Filho
    • 1
    • 2
  1. 1.Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations