The brain in acute liver failure. A tortuous path from hyperammonemia to cerebral edema

  • Peter Nissen Bjerring
  • Martin Eefsen
  • Bent Adel Hansen
  • Fin Stolze Larsen
Original Paper

Abstract

Acute liver failure (ALF) is a condition with an unfavourable prognosis. Multiorgan failure and circulatory collapse are frequent causes of death, but cerebral edema and intracranial hypertension (ICH) are also common complications with a high risk of fatal outcome. The underlying pathogenesis has been extensively studied and although the development of cerebral edema and ICH is of a complex and multifactorial nature, it is well established that ammonia plays a pivotal role. This review will focus on the effects of hyperammonemia on neurotransmission, mitochondrial function, oxidative stress, inflammation and regulation of cerebral blood flow. Finally, potential therapeutic targets and future perspectives are briefly discussed.

Keywords

Acute liver failure Cerebral edema Hyperammonemia Intracranial hypertension 

References

  1. Albrecht J, Norenberg MD (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44:788–794PubMedCrossRefGoogle Scholar
  2. Albrecht J, Bender AS, Norenberg MD (1998) Potassium-stimulated GABA release is a chloride-dependent but sodium- and calcium-independent process in cultured astrocytes. Acta Neurobiol Exp (Wars ) 58:169–175Google Scholar
  3. Bell MJ, Kochanek PM, Carcillo JA, Mi Z, Schiding JK, Wisniewski SR, Clark RS, Dixon CE, Marion DW, Jackson E (1998) Interstitial adenosine, inosine, and hypoxanthine are increased after experimental traumatic brain injury in the rat. J Neurotrauma 15:163–170PubMedCrossRefGoogle Scholar
  4. Bender AS, Norenberg MD (1998) Effect of benzodiazepines and neurosteroids on ammonia-induced swelling in cultured astrocytes. J Neurosci Res 54:673–680PubMedCrossRefGoogle Scholar
  5. Berlett BS, Levine RL, Stadtman ER (1998) Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: both modifications mimic effects of adenylylation. Proc Natl Acad Sci U S A 95:2784–2789PubMedCrossRefGoogle Scholar
  6. Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di LF, Forte MA (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099PubMedCrossRefGoogle Scholar
  7. Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555:589–606PubMedCrossRefGoogle Scholar
  8. Bjerring PN, Hauerberg J, Frederiksen HJ, Jorgensen L, Hansen BA, Tofteng F, Larsen FS (2008) Cerebral Glutamine Concentration and Lactate-Pyruvate Ratio in Patients with Acute Liver Failure. Neurocrit Care Epub ahead of printGoogle Scholar
  9. Bradbury MW (1993) The blood-brain barrier. Exp Physiol 78:453–472PubMedGoogle Scholar
  10. Brusilow SW, Traystman R (1986) Hepatic encephalopathy. N Engl J Med 314:786–787PubMedGoogle Scholar
  11. Buchczyk DP, Grune T, Sies H, Klotz LO (2003) Modifications of glyceraldehyde-3-phosphate dehydrogenase induced by increasing concentrations of peroxynitrite: early recognition by 20S proteasome. Biol Chem 384:237–241PubMedCrossRefGoogle Scholar
  12. Butterworth RF (2000) Hepatic encephalopathy: a neuropsychiatric disorder involving multiple neurotransmitter systems. Curr Opin Neurol 13:721–727PubMedCrossRefGoogle Scholar
  13. Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227PubMedCrossRefGoogle Scholar
  14. Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V (2007) Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 46:514–519PubMedCrossRefGoogle Scholar
  15. Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH (2001) MAP kinases. Chem Rev 101:2449–2476PubMedCrossRefGoogle Scholar
  16. Chung C, Gottstein J, Blei AT (2001) Indomethacin prevents the development of experimental ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 34:249–254PubMedCrossRefGoogle Scholar
  17. Clark RS, Carcillo JA, Kochanek PM, Obrist WD, Jackson EK, Mi Z, Wisneiwski SR, Bell MJ, Marion DW (1997) Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humans. Neurosurgery 41:1284–1292PubMedCrossRefGoogle Scholar
  18. Cooper AJ, Lai JC (1987) Cerebral ammonia metabolism in normal and hyperammonemic rats. Neurochem Pathol 6:67–95PubMedCrossRefGoogle Scholar
  19. de Boer AG, Gaillard PJ (2006) Blood-brain barrier dysfunction and recovery. J Neural Transm 113:455–462PubMedCrossRefGoogle Scholar
  20. Dethloff T, Knudsen GM, Hansen BA, Larsen FS (2005) Effects of porta-systemic shunting and ammonia infusion on cerebral blood flow autoregulation in the rat. Neurocrit Care 3:86–90PubMedCrossRefGoogle Scholar
  21. Dethloff TJ, Knudsen GM, Larsen FS (2008) Cerebral blood flow autoregulation in experimental liver failure. J Cereb Blood Flow Metab 28:916–926PubMedCrossRefGoogle Scholar
  22. Durham S, Yonas H, Aggarwal S, Darby J, Kramer D (1995) Regional cerebral blood flow and CO2 reactivity in fulminant hepatic failure. J Cereb Blood Flow Metab 15:329–335PubMedGoogle Scholar
  23. Eiserich JP, Estevez AG, Bamberg TV, Ye YZ, Chumley PH, Beckman JS, Freeman BA (1999) Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci U S A 96:6365–6370PubMedCrossRefGoogle Scholar
  24. Ellis A, Wendon J (1996) Circulatory, respiratory, cerebral, and renal derangements in acute liver failure: pathophysiology and management. Semin Liver Dis 16:379–388PubMedCrossRefGoogle Scholar
  25. Gorg B, Bidmon HJ, Keitel V, Foster N, Goerlich R, Schliess F, Haussinger D (2006) Inflammatory cytokines induce protein tyrosine nitration in rat astrocytes. Arch Biochem Biophys 449:104–114PubMedCrossRefGoogle Scholar
  26. Jalan R, Olde Damink SW, Hayes PC, Deutz NE, Lee A (2004) Pathogenesis of intracranial hypertension in acute liver failure: inflammation, ammonia and cerebral blood flow. J Hepatol 41:613–620PubMedCrossRefGoogle Scholar
  27. Jayakumar AR, Panickar KS, Murthy C, Norenberg MD (2006) Oxidative stress and mitogen-activated protein kinase phosphorylation mediate ammonia-induced cell swelling and glutamate uptake inhibition in cultured astrocytes. J Neurosci 26:4774–4784PubMedCrossRefGoogle Scholar
  28. Johansen ML, Bak LK, Schousboe A, Iversen P, Sorensen M, Keiding S, Vilstrup H, Gjedde A, Ott P, Waagepetersen HS (2007) The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes. Neurochem Int 50:1042–1051PubMedCrossRefGoogle Scholar
  29. Keiding S, Sorensen M, Bender D, Munk OL, Ott P, Vilstrup H (2006) Brain metabolism of 13N-ammonia during acute hepatic encephalopathy in cirrhosis measured by positron emission tomography. Hepatology 43:42–50PubMedCrossRefGoogle Scholar
  30. Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V (2003) Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 981:193–200PubMedCrossRefGoogle Scholar
  31. Lai JC, Cooper AJ (1986) Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 47:1376–1386PubMedCrossRefGoogle Scholar
  32. Lang F (2007) Mechanisms and significance of cell volume regulation. J Am Coll Nutr 26:613S–623SPubMedGoogle Scholar
  33. Larsen FS, Adel HB, Pott F, Ejlersen E, Secher NH, Paulson OB, Knudsen GM (1996) Dissociated cerebral vasoparalysis in acute liver failure. A hypothesis of gradual cerebral hyperaemia. J Hepatol 25:145–151Google Scholar
  34. Lassen NA (1964) Autoregulation of cerebral blood flow. Circ Res 15:SUPPL-4Google Scholar
  35. Lockwood AH, Yap EW, Wong WH (1991) Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy. J Cereb Blood Flow Metab 11:337–341PubMedGoogle Scholar
  36. Lozeva V, Montgomery JA, Tuomisto L, Rocheleau B, Pannunzio M, Huet PM, Butterworth RF (2004) Increased brain serotonin turnover correlates with the degree of shunting and hyperammonemia in rats following variable portal vein stenosis. J Hepatol 40:742–748PubMedCrossRefGoogle Scholar
  37. Master S, Gottstein J, Blei AT (1999) Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 30:876–880PubMedCrossRefGoogle Scholar
  38. Nagaraja TN, Brookes N (1998) Intracellular acidification induced by passive and active transport of ammonium ions in astrocytes. Am J Physiol 274:C883–C891PubMedGoogle Scholar
  39. Norenberg MD (1977) A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab Invest 36:618–627Google Scholar
  40. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310PubMedCrossRefGoogle Scholar
  41. Ott P, Clemmesen O, Larsen FS (2005) Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis. Neurochem Int 47:13–18PubMedCrossRefGoogle Scholar
  42. Owen EE, Tyor MP, Flanagan JF, Berry JN (1960) The kidney as a source of blood ammonia in patients with liver disease: the effect of acetazolamide. J Clin Invest 39:288–294PubMedCrossRefGoogle Scholar
  43. Pidoplichko VI, Dani JA (2006) Acid-sensitive ionic channels in midbrain dopamine neurons are sensitive to ammonium, which may contribute to hyperammonemia damage. Proc Natl Acad Sci U S A 103:11376–11380PubMedCrossRefGoogle Scholar
  44. Rama Rao KV, Norenberg MD (2007) Aquaporin-4 in hepatic encephalopathy. Metab Brain Dis 22:265–275PubMedCrossRefGoogle Scholar
  45. Rama Rao KV, Chen M, Simard JM, Norenberg MD (2003a) Increased aquaporin-4 expression in ammonia-treated cultured astrocytes. Neuroreport 14:2379–2382PubMedCrossRefGoogle Scholar
  46. Rama Rao KV, Chen M, Simard JM, Norenberg MD (2003b) Suppression of ammonia-induced astrocyte swelling by cyclosporin A. J Neurosci Res 74:891–897PubMedCrossRefGoogle Scholar
  47. Rama Rao KV, Jayakumar AR, Norenberg MD (2005) Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. Neurochem Int 47:31–38PubMedCrossRefGoogle Scholar
  48. Reivich M (1974) Blood flow metabolism couple in brain. Res Publ Assoc Res Nerv Ment Dis 53:125–140PubMedGoogle Scholar
  49. Rodrigo R, Erceg S, Felipo V (2005) Neurons exposed to ammonia reproduce the differential alteration in nitric oxide modulation of guanylate cyclase in the cerebellum and cortex of patients with liver cirrhosis. Neurobiol Dis 19:150–161PubMedCrossRefGoogle Scholar
  50. Rolando N, Wade J, Davalos M, Wendon J, Philpott-Howard J, Williams R (2000) The systemic inflammatory response syndrome in acute liver failure. Hepatology 32:734–739PubMedCrossRefGoogle Scholar
  51. Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB (1992) Neuroprotective role of adenosine in cerebral ischaemia. Trends Pharmacol Sci 13:439–445PubMedCrossRefGoogle Scholar
  52. Shawcross DL, Balata S, Olde Damink SW, Hayes PC, Wardlaw J, Marshall I, Deutz NE, Williams R, Jalan R (2004) Low myo-inositol and high glutamine levels in brain are associated with neuropsychological deterioration after induced hyperammonemia. Am J Physiol Gastrointest Liver Physiol 287:G503–G509PubMedCrossRefGoogle Scholar
  53. Sorensen M, Keiding S (2007) New findings on cerebral ammonia uptake in HE using functional (13)N-ammonia PET. Metab Brain Dis 22:277–284PubMedCrossRefGoogle Scholar
  54. Strauss GI, Hogh P, Moller K, Knudsen GM, Hansen BA, Larsen FS (1999) Regional cerebral blood flow during mechanical hyperventilation in patients with fulminant hepatic failure. Hepatology 30:1368–1373PubMedCrossRefGoogle Scholar
  55. Strauss GI, Knudsen GM, Kondrup J, Moller K, Larsen FS (2001) Cerebral metabolism of ammonia and amino acids in patients with fulminant hepatic failure. Gastroenterology 121:1109–1119PubMedCrossRefGoogle Scholar
  56. Swain M, Butterworth RF, Blei AT (1992) Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 15:449–453PubMedCrossRefGoogle Scholar
  57. Tait MJ, Saadoun S, Bell BA, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31:37–43PubMedCrossRefGoogle Scholar
  58. Tofteng F, Hauerberg J, Hansen BA, Pedersen CB, Jorgensen L, Larsen FS (2006) Persistent arterial hyperammonemia increases the concentration of glutamine and alanine in the brain and correlates with intracranial pressure in patients with fulminant hepatic failure. J Cereb Blood Flow Metab 26:21–27PubMedCrossRefGoogle Scholar
  59. Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840PubMedCrossRefGoogle Scholar
  60. Vaquero J (2008) Abstracts of the 13th International Symposium on Hepatic Encephalopathy and Nitrogen Metabolism The 13th ISHEN. Liver Int 28:721–752Google Scholar
  61. Ware AJ, D, Agostino AN, Combes B (1971) Cerebral edema: a major complication of massive hepatic necrosis. Gastroenterology 61:877–884PubMedGoogle Scholar
  62. Weber FL Jr., Veach GL (1979) GI production of ammonia. Gastroenterology 77:1166PubMedGoogle Scholar
  63. Weiner ID (2004) The Rh gene family and renal ammonium transport. Curr Opin Nephrol Hypertens 13:533–540PubMedCrossRefGoogle Scholar
  64. Windmueller HG (1982) Glutamine utilization by the small intestine. Adv Enzymol Relat Areas Mol Biol 53:201–237PubMedCrossRefGoogle Scholar
  65. Wright G, Shawcross D, Olde Damink SW, Jalan R (2007) Brain cytokine flux in acute liver failure and its relationship with intracranial hypertension. Metab Brain Dis 22:375–388PubMedCrossRefGoogle Scholar
  66. Zwingmann C (2007) The anaplerotic flux and ammonia detoxification in hepatic encephalopathy. Metab Brain Dis 22:235–249PubMedCrossRefGoogle Scholar
  67. Zwingmann C, Chatauret N, Leibfritz D, Butterworth RF (2003) Selective increase of brain lactate synthesis in experimental acute liver failure: results of a [H-C] nuclear magnetic resonance study. Hepatology 37:420–428PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Peter Nissen Bjerring
    • 1
  • Martin Eefsen
    • 1
  • Bent Adel Hansen
    • 1
  • Fin Stolze Larsen
    • 1
  1. 1.Dept. Hepatology, section A-2121, RigshospitaletUniversity Hospital of CopenhagenCopenhagenDenmark

Personalised recommendations