Advertisement

Metabolic Brain Disease

, Volume 20, Issue 4, pp 303–318 | Cite as

Mechanisms of Ammonia-Induced Astrocyte Swelling

  • M. D. NorenbergEmail author
  • K. V. Rama Rao
  • A. R. Jayakumar
Article

Abstract

Astrocyte swelling represents the major factor responsible for the brain edema associated with fulminant hepatic failure (FHF). The edema may be of such magnitude as to increase intracranial pressure leading to brain herniation and death. Of the various agents implicated in the generation of astrocyte swelling, ammonia has had the greatest amount of experimental support. This article reviews mechanisms of ammonia neurotoxicity that contribute to astrocyte swelling. These include oxidative stress and the mitochondrial permeability transition (MPT). The involvement of glutamine in the production of cell swelling will be highlighted. Evidence will be provided that glutamine induces oxidative stress as well as the MPT, and that these events are critical in the development of astrocyte swelling in hyperammonemia.

Keywords

Ammonia glutamine cell swelling oxidative stress mitochondrial permeability transition aquaporin-4 lactate peripheral benzodiazepine receptor neurosteroids glutathione 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, R., and Shukla, G.S. (1999). Potential role of cerebral glutathione in the maintenance of blood–brain barrier integrity in rat. Neurochem. Res. 24:1507–1514.PubMedCrossRefGoogle Scholar
  2. Anholt, R.R.H., Pedersen, P.L., DeSouza, E.B., and Snyder, S.H. (1986). The peripheral-type benzodiazepine receptor: Localization to the mitochondrial outer membrane. J. Biol. Chem. 261:576–583.PubMedGoogle Scholar
  3. Badaut, J., Lasbennes, F., Magistretti, P.J., and Regli, L. (2002). Aquaporins in brain: Distribution, physiology and pathophysiology. J. Cereb. Blood Flow Metab. 22:367–378.PubMedGoogle Scholar
  4. Bai, G., Rama Rao, K.V., Murthy, Ch.R.K., Panickar, K.S., Jayakumar, A.R., and Norenberg, M.D. (2001). Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J. Neurosci. Res. 66:981–991.PubMedCrossRefGoogle Scholar
  5. Banaclocha, M.M., Hernández, A.I., Martínez, N., and Ferrándiz, M.L. (1997). N-acetylcysteine protects against age-related increase in oxidized proteins in mouse synaptic mitochondria. Brain Res. 762:256–258.PubMedCrossRefGoogle Scholar
  6. Bates, T.E., Williams, S.R., Kauppinen, R.A., and Gadian, D.G. (1989). Observation of cerebral metabolites in an animal model of acute liver failure in vivo: A 1H and 31P nuclear magnetic resonance study. J. Neurochem. 53:102–110.PubMedGoogle Scholar
  7. Bender, A.S., Dombro, R.S., and Norenberg, M.D. (1998). Glutathione as a factor in ammonia-induced swelling. Soc. Neurosci. Abstr. 24:2013.Google Scholar
  8. Bender, A.S., and Hertz, L. (1985). Binding of (3H) RO5-4864 in primary cultures of astrocytes. Brain Res. 341:41–49.PubMedCrossRefGoogle Scholar
  9. Bender, A.S., and Hertz, L. (1987). Inhibition of [3H]diazepam binding in primary cultures of astrocytes by atrial natriuretic peptide and by a cyclic GMP analog. Brain Res. 436:189–192.PubMedCrossRefGoogle Scholar
  10. Bender, A.S., and Norenberg, M.D. (1998). Effect of benzodiazepines and neurosteroids on ammonia-induced swelling in cultured astrocytes. J. Neurosci. Res. 54:673–680.PubMedCrossRefGoogle Scholar
  11. Benjamin, A.M., Okamoto, K., and Quastel, J.H. (1978). Effects of ammonium ions on spontaneous action potentials and on contents of sodium, potassium, ammonium and chloride ions in brain in vitro. J. Neurochem. 30:131–143.PubMedGoogle Scholar
  12. Benjamin, A.M., and Quastel, J.H. (1975). Metabolism of amino acids and ammonia in rat brain cortex slices in vitro. A possible role of ammonia in brain function. J. Neurochem. 25:197–206.PubMedGoogle Scholar
  13. Bernardi, P., Colonna, R., Costantini, P., Eriksson, O., Fontaine, E., Ichas, F., Massari, S., Nicolli, A., Petronilli, V., and Scorrano, L. (1998). The mitochondrial permeability transition. BioFactors 8:273–281.PubMedGoogle Scholar
  14. Bismuth, H., Samuel, D., Castaing, D., Williams, R., and Pereira, S.P. (1996). Liver transplantation in Europe for patients with acute liver failure. Semin. Liver Dis. 16:415–425.PubMedCrossRefGoogle Scholar
  15. Blei, A.T. (1991). Cerebral edema and intracranial hypertension in acute liver failure: Distinct aspects of the same problem. Hepatology 13:376–379.PubMedCrossRefGoogle Scholar
  16. Blei, A.T., and Larsen, F.S. (1999). Pathophysiology of cerebral edema in fulminant hepatic failure. J. Hepatol. 31:771–776.PubMedCrossRefGoogle Scholar
  17. Blei, A.T., Olafsson, S., Therrien, G., and Butterworth, R.F. (1994). Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 19:1437–1444.PubMedCrossRefGoogle Scholar
  18. Bluml, S., Zuckerman, E., Tan, J., and Ross, B.D. (1998). Proton-decoupled 31P magnetic resonance spectroscopy reveals osmotic and metabolic disturbances in human hepatic encephalopathy. J. Neurochem. 71:1564–1576.PubMedGoogle Scholar
  19. Bosman, D.K., Deutz, N.E., de Graaf, A.A., van Eijk, H.M., Bovee, W.M., Maas, M.A., Jorning, G.G., and Chamuleau, R.A. (1990). Changes in brain metabolism during hyperammonemia and acute liver failure: Results of a comparative 1H-NMR spectroscopy and biochemical investigation. Hepatology 12:281–290.PubMedGoogle Scholar
  20. Brahma, B., Forman, R.E., Stewart, E.E., Nicholson, C., and Rice, M.E. (2000). Ascorbate inhibits edema in brain slices. J. Neurochem. 74:1263–1270.PubMedGoogle Scholar
  21. Brusilow, S.W., and Traystman, R.J. (1986). Letter to editor. New Engl. J. Med. 314:786.Google Scholar
  22. Butterworth, R.F. (2000). The astrocytic (“peripheral-type”) benzodiazepine receptor: Role in the pathogenesis of portal-systemic encephalopathy. Neurochem. Int. 36:411–416.PubMedGoogle Scholar
  23. Capocaccia, L., and Angelico, M. (1991). Fulminant hepatic failure: Clinical features, etiology, epidemiology, and current management. Dig. Dis. Sci. 36:775–779.PubMedCrossRefGoogle Scholar
  24. Castilho, R.F., Kowaltowski, A.J., Meinicke, A.R., Bechara, E.J.H., and Vercesi, A.E. (1995). Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria. Free Rad. Biol. Med. 18:479–486.PubMedGoogle Scholar
  25. Chan, P.H., Longar, S., Chen, S., Yu, A.C., Hillered, L., Chu, L., Imaizumi, S., Pereira, B., Moore, K., and Woolworth, V. (1989). The role of arachidonic acid and oxygen radical metabolites in the pathogenesis of vasogenic brain edema and astrocytic swelling. Ann. N.Y. Acad. Sci. 559:237–247.PubMedGoogle Scholar
  26. Chan, P.H., Yurko, M., and Fishman, R.A. (1982). Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. J. Neurochem. 38:525–531.PubMedGoogle Scholar
  27. Clark, E.C., Thomas, D., Baer, J., and Sterns, R.H. (1996). Depletion of glutathione from brain cells in hyponatremia. Kidney Int. 49:470–476.PubMedGoogle Scholar
  28. Clemmesen, J.O., Hansen, B.A., and Larsen, F.S. (1997). Indomethacin normalizes intracranial pressure in acute liver failure: A twenty-three-year-old woman treated with indomethacin. Hepatology 26:1423–1425.PubMedGoogle Scholar
  29. Clemmesen, J.O., Larsen, F.S., Kondrup, J., Hansen, B.A., and Ott, P. (1999). Cerebral herniation in acute liver failure is correlated with arterial ammonia concentration. Hepatology 29:648–653.PubMedGoogle Scholar
  30. Cole, M., Rutherford, R.B., and Smith, F.O. (1972). Experimental ammonia encephalopathy in the primate. Arch. Neurol. 26:130–136.PubMedGoogle Scholar
  31. Cooper, A.J.L. (2001). Role of glutamine in cerebral nitrogen metabolism and ammonia neurotoxicity. Ment. Retard. Dev. Disabil. Res. Rev. 7:280–286.PubMedCrossRefGoogle Scholar
  32. Córdoba, J., and Blei, A.T. (1996). Brain edema and hepatic encephalopathy. Semin. Liver Dis. 16:271–280.PubMedGoogle Scholar
  33. Córdoba, J., Crespin, J., Gottstein, J., and Blei, A.T. (1999). Mild hypothermia modifies ammonia-induced brain edema in rats after portacaval anastomosis. Gastroenterology 116:686–693.PubMedGoogle Scholar
  34. Córdoba, J., Gottstein, J., and Blei, A.T. (1996). Glutamine, myo-inositol, and organic brain osmolytes after portacaval anastomosis in the rat: Implications for ammonia-induced brain edema. Hepatology 24: 919– 923.Google Scholar
  35. Córdoba, J., Gottstein, J., and Blei, A.T. (1998) Chronic hyponatremia exacerbates ammonia-induced brain edema in rats after portacaval anastomosis. J. Hepatol. 29:589–594.PubMedGoogle Scholar
  36. Crompton, M., Virji, S., and Ward, J.M. (1998). Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur. J. Biochem. 258:729–735.PubMedCrossRefGoogle Scholar
  37. Farinelli, S.E., and Nicklas, W.J. (1992). Glutamate metabolism in rat cortical astrocyte cultures. J. Neurochem. 58:1905–1915.PubMedGoogle Scholar
  38. Garcia, J.H., Liu, K.F., Yoshida, Y., Chen, S., and Lian, J. (1994). The brain microvessels: Factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am. J. Pathol. 145:1–13.Google Scholar
  39. Ginefri-Gayet, M., and Gayet, J. (1988). Study of the hypothermia induced by methionine sulfoximine in the rat. Pharmacol. Biochem. Behav. 31:797–802.PubMedCrossRefGoogle Scholar
  40. Globus, M.Y.T., Alonso, O., Dietrich, W.D., Busto, R., and Ginsberg, M. (1995). Glutamate release and free radical production following brain injury: Effects of posttraumatic hypothermia. J. Neurochem. 65:1704–1711.PubMedGoogle Scholar
  41. Gunter, T.E., and Pfeiffer, D.R. (1990). Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258:C755–C786.PubMedGoogle Scholar
  42. Haghighat, N., and McCandless, D.W. (1997). Effect of ammonium chloride on energy metabolism of astrocytes and C6-glioma cells in vitro. Metab. Brain Dis. 12:287–298.PubMedCrossRefGoogle Scholar
  43. Halestrap, A.P., Woodfield, K.Y., and Connern, C.P. (1997). Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J. Biol. Chem. 272:3346–3354.PubMedCrossRefGoogle Scholar
  44. Haseloff, R.F., Blasig, I.E., Meffert, H., and Ebert, B. (1990). Hydroxyl radical scavenging and antipsoriatic activity of benzoic acid derivatives. Free Rad. Biol. Med. 9:111–115.PubMedCrossRefGoogle Scholar
  45. Häussinger, D. (1996). The role of cellular hydration in the regulation of cell function. Biochem. J. 313:697–710.PubMedGoogle Scholar
  46. Häussinger, D., Kircheis, G., Fischer, R., Schliess, F., and Vom Dahl, S. (2000). Hepatic encephalopathy in chronic liver disease: A clinical manifestation of astrocyte swelling and low-grade cerebral edema. J. Hepatol. 32:1035–1038.PubMedGoogle Scholar
  47. Häussinger, D., Lang, F., Bauers, K., and Gerok, W. (1990). Control of hepatic nitrogen metabolism and glutathione release by cell volume regulatory mechanisms. Eur. J. Biochem. 193:891–898.Google Scholar
  48. Hazell, A.S., and Butterworth, R.F. (1999). Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proc. Soc. Exp. Biol. Med. 222:99–112.PubMedCrossRefGoogle Scholar
  49. Hazell, A.S., and Norenberg, M.D. (1998). Ammonia and manganese increase arginine uptake in cultured astrocytes. Neurochem. Res. 23:869–873.PubMedCrossRefGoogle Scholar
  50. Hoffmann, E.K., and Dunham, P.B. (1996). Membrane mechanisms and intracellular signaling in cell volume regulation. Int. Rev. Cytol. 161:173–262.Google Scholar
  51. Horowitz, M.E., Schafer, D.F., Molnar, P., Jones, E.A., Blasberg, R.G., Patlak, C.S., Waggoner, J., and Fenstermacher, J.D. (1983). Increased blood–brain transfer in a rabbit model of acute liver failure. Gastroenterology 84:1003–1011.PubMedGoogle Scholar
  52. Hortelano, S., Dallaporta, B., Zamzami, N., Hirsch, T., Susin, S.A., Marzo, I., Bosca, L., and Kroemer, G. (1997). Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Lett. 410:373–377.PubMedCrossRefGoogle Scholar
  53. Hourani, B.T., Hamlin, E.M., and Reynolds, T.B. (1971). Cerebrospinal fluid glutamine as a measure of hepatic encephalopathy. Arch. Intern. Med. 127:1033–1036.PubMedCrossRefGoogle Scholar
  54. Huang, R., Kala, G., Murthy, C.R.K., and Hertz, L. (1994). Effects of chronic exposure to ammonia on glutamate and glutamine interconversion and compartmentation in homogeneous primary cultures of mouse astrocytes. Neurochem. Res. 19:257–265.PubMedGoogle Scholar
  55. Itzhak, Y., Baker, L., and Norenberg, M.D. (1993). Characterization of the peripheral-type benzodiazepine receptor in cultured astrocytes: Evidence for multiplicity. Glia 9:211–218.PubMedCrossRefGoogle Scholar
  56. Jakubovicz, D., and Klip, A. (1989). Lactic acid-induced swelling in C6 glial cells via Na+/H+ exchange. Brain Res. 485:215–224.PubMedCrossRefGoogle Scholar
  57. Jalan, R. (2001). The inflammatory basis of intracranial hypertension in acute liver failure. J. Hepatol. 34:940– 942.PubMedCrossRefGoogle Scholar
  58. Jalan, R., Olde Damink, S.W., Deutz, N.E., Davies, N.A., Garden, O.J., Madhavan, K.K., Hayes, P.C., and Lee, A. (2003). Moderate hypothermia prevents cerebral hyperemia and increase in intracranial pressure in patients undergoing liver transplantation for acute liver failure. Transplantation 75:2034–2039.PubMedGoogle Scholar
  59. Jalan, R., Olde Damink, S.W.M., Deutz, N.E.P., Lee, A., and Hayes, P.C. (1999). Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure. Lancet 354:1164–1168.PubMedCrossRefGoogle Scholar
  60. Jalan, R., Pollok, A., Shah, S., Madhavan, K., and Simpson, K.J. (2002). Liver derived pro-inflammatory cytokines may be important in producing intracranial hypertension in acute liver failure. J. Hepatol. 37:536– 538.PubMedCrossRefGoogle Scholar
  61. Jayakumar, A.R., Panickar, K.S., and Norenberg, M.D. (2002). Peripheral benzodiazepine receptor ligands induce the formation of free radicals in cultured neural cells. J. Neurochem. 83:1226–1234.PubMedCrossRefGoogle Scholar
  62. Jayakumar, A.R., Rama Rao, K.V., and Norenberg, M.D. (2004). Glutamine-induced free radical production in cultured astrocytes. Glia 46:296–301.PubMedCrossRefGoogle Scholar
  63. Jung, J.S., Bhat, R.V., Preston, G.M., Guggino, W.B., Baraban, J.M., and Agre, P. (2004). Molecular characterization of an aquaporin cDNA from brain: Candidate osmoreceptor and regulator of water balance. Proc. Natl. Acad. Sci. U.S.A. 26:13052–13056.Google Scholar
  64. Kato, M., Hughes, R.D., Keays, R.T., and Williams, R. (1992). Electron microscopic study of brain capillaries in cerebral edema from fulminant hepatic failure. Hepatology 15:1060–1066.PubMedGoogle Scholar
  65. Kimelberg, H.K., and Mongin, A.A. (1998). Swelling-activated release of excitatory amino acids in the brain: Relevance for pathophysiology. Contrib. Nephrol. 123:240–257.PubMedGoogle Scholar
  66. Kimelberg, H.K., and O'Connor, E.R. (1988). Swelling-induced depolarization of astrocyte potentials. Glia 1:219–224.PubMedCrossRefGoogle Scholar
  67. King, L.S., Yasui, M., and Agre, P. (2000). Aquaporins in health and disease. Mol. Med. Today 6:60–65.PubMedGoogle Scholar
  68. Kinnally, K.W., Zorov, D.B., Antonenko, Y.N., Snyder, S.H., McEnery, M.W., and Tedeschi, H. (1993). Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc. Natl. Acad. Sci. U.S.A. 90:1374–1378.PubMedGoogle Scholar
  69. Kosenko, E., Kaminsky, Y., Grau, E., Miñana. M.D., Grisolía, S., and Felipo, V. (1995). Nitroarginine, an inhibitor of nitric oxide synthetase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism. Neurochem. Res. 20:451–456.PubMedCrossRefGoogle Scholar
  70. Kosenko, E., Kaminsky, Y., Kaminsky, A., Valencia, M., Lee, L., Hermenegildo, C., and Felipo, V. (1997). Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Rad. Res. 27:637–644.Google Scholar
  71. Kosenko, E., Kaminski, Y., Lopata, O., Muravyov, N., and Felipo, V. (1999). Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication. Free Rad. Biol. Med. 26:1369–1374.PubMedCrossRefGoogle Scholar
  72. Kosenko, E., Kaminsky, Y., Lopata, O., Muravyov, N., Kaminsky, A., Hermenegildo, C., and Felipo, V. (1998). Nitroarginine, an inhibitor of nitric oxide synthase, prevents changes in superoxide radical and antioxidant enzymes induced by ammonia intoxication. Metab. Brain Dis. 13:29–41.PubMedCrossRefGoogle Scholar
  73. Kvamme, E., Svenneby, G., Hertz, L., and Schousboe, A. (1982). Properties of phosphate activated glutaminase in astrocytes cultured from mouse brain. Neurochem. Res. 7:761–770.PubMedGoogle Scholar
  74. Laake, J.H., Takumi, Y., Torgner, I.A., Kvamme, E., and Ottersen, O.P. (1999). Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88:1137–1151.PubMedCrossRefGoogle Scholar
  75. Lamar, C., Jr., and Sellinger, O.Z. (1965). The inhibition in vivo of cerebral glutamine synthetase and glutamine transferase by the convulsant methionine sulfoximine. Biochem. Pharmacol. 14:489–506.PubMedCrossRefGoogle Scholar
  76. Lambert, J.J., Belelli, D., Hill-Venning, C., and Peters, J.A. (1995). Neurosteroids and GABAA receptor function. Trends Pharmacol. Sci. 16:295–303.PubMedCrossRefGoogle Scholar
  77. Larsen, F.S., Gottstein, J., and Blei, A.T. (2001). Cerebral hyperemia and nitric oxide synthase in rats with ammonia-induced brain edema. J. Hepatol. 34:548–554.PubMedCrossRefGoogle Scholar
  78. Livingstone, A.S., Potvin, M., Goresky, C.A., Finlayson, M.H., and Hinchey, E.J. (1977). Changes in the blood–brain barrier in hepatic coma after hepatectomy in the rat. Gastroenterology 73:697–704.PubMedGoogle Scholar
  79. Majewska, M.D. (1992). Neurosteroids: Endogenous bimodal modulators of the GABAA receptor: Mechanism of action and physiological significance. Prog. Neurobiol. 38:379–395.PubMedCrossRefGoogle Scholar
  80. Makowka, L., and Demetriou, A.A. (1993). Control of cerebral oedema by total hepatectomy and extracorporeal liver support in fulminant hepatic failure. Lancet 342:898–899.PubMedGoogle Scholar
  81. Manley, G.T., Fujimura, M., Ma, T.H., Noshita, N., Filiz, F., Bollen, A.W., Chan, P., and Verkman, A.S. (2000). Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6:159–163.PubMedCrossRefGoogle Scholar
  82. Manning, J.M., Moore, S., Rowe, W.B., and Meister, A. (1969). Identification of L-methionine S-sulfoximine as the diastereoisomer of L-methionine SR-sulfoximine that inhibits glutamine synthetase. Biochemistry 8:2681–2685.PubMedCrossRefGoogle Scholar
  83. Margulies, J.E., Thompson, R.C., and Demitriou, A.A. (1999). Aquaporin-4 water channel is up-regulated in the brain in fulminant hepatic failure. Hepatology 30(Suppl., Pt. 2):938.Google Scholar
  84. Martinez, A.J. (1968). Electron microscopy in human hepatic encephalopathy. Act. Neuropathol. (Berl.) 11:82– 86.Google Scholar
  85. Master, S., Gottstein, J., and Blei, A.T. (1999). Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 30:876–880.PubMedCrossRefGoogle Scholar
  86. Munoz, S.J., Moritz, M.J., Bell, R., Northrup, B., Martin, P., and Radomski, J. (1993). Factors associated with severe intracranial hypertension in candidates for emergency liver transplantation. Transplantation 55:1071–1074.PubMedCrossRefGoogle Scholar
  87. Murthy, Ch.R.K., Bai, G., Dombro, R.S., and Norenberg, M.D. (2000b). Ammonia-induced swelling in primary cultures of rat astrocytes: Role of free radicals. Soc. Neurosci. Abstr. 26:1893.Google Scholar
  88. Murthy, Ch.R.K., Bender, A.S., Dombro, R.S., Bai, G., and Norenberg, M.D. (2000a). Elevation of glutathione levels by ammonium ions in primary cultures of rat astrocytes. Neurochem. Int. 37:255–268.CrossRefGoogle Scholar
  89. Murthy, Ch.R.K., Rama Rao, K.V., Bai, G., and Norenberg, M.D. (2001a). Ammonia induced production of free radicals in primary cultures of rat astrocytes. J. Neurosci. Res. 66:282–288.CrossRefGoogle Scholar
  90. Myers, R., Manjil, L.G., Cullen, B.M., Price, G.W., Franckowiak, R.S., and Cremer, J.E. (1991). Macrophage and astrocyte populations in relation to (3H)PK 11195 binding following a local ischemic lesion. J. Cereb. Blood Flow Metab. 11:314–322.PubMedGoogle Scholar
  91. Nagaraja, T.N., and Brookes, N. (1998). Intracellular acidification induced by passive and active transport of ammonium ions in astrocytes. Am. J. Physiol. Cell Physiol. 274:C883–C891.Google Scholar
  92. Norenberg, M.D. (1977). A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab. Invest. 36:618–627.PubMedGoogle Scholar
  93. Norenberg, M.D. (1998). Astroglial dysfunction in hepatic encephalopathy. Metab. Brain Dis. 13:319–335.PubMedCrossRefGoogle Scholar
  94. Norenberg, M.D. (2003). Oxidative and nitrosative stress in ammonia neurotoxicity. Hepatology 37:245–248.PubMedCrossRefGoogle Scholar
  95. Norenberg, M.D., Baker, L., Norenberg, L.O.B., Blicharska, J., Bruce-Gregorios, J.H., and Neary, J.T. (1991). Ammonia-induced astrocyte swelling in primary culture. Neurochem. Res. 16:833–836.PubMedCrossRefGoogle Scholar
  96. Norenberg, M.D., and Bender, A.S. (1994). Astrocyte swelling in liver failure: Role of glutamine and benzodiazepines. Act. Neurochir. 60(Suppl.):24–27.Google Scholar
  97. Norenberg, M.D., and Itzhak, Y. (1995). Acute liver failure and hyperammonemia increase nitric oxide synthase in mouse brain. Soc. Neurosci. Abstr. 21:869.Google Scholar
  98. Norenberg, M.D., Itzhak, Y., and Bender, A.S. (1997). The peripheral benzodiazepine receptor and neurosteroids in hepatic encephalopathy. Adv. Exp. Med. Biol. 420:95–111.PubMedGoogle Scholar
  99. Norenberg, M.D., Jayakumar, A.R., and Rama Rao, K.V. (2004a). Oxidative stress in the pathogenesis of hepatic encephalopathy. Metab. Brain Dis. 19:313–329.CrossRefGoogle Scholar
  100. Norenberg, M.D., and Martinez-Hernandez, A. (1979). Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161:303–310.PubMedCrossRefGoogle Scholar
  101. Norenberg, M.D., Rama Rao, K.V., and Jayakumar, A.R. (2004b). Ammonia neurotoxicity and the mitochondrial permeability transition. J. Bioenerg. Biomembr. 36:303–307.CrossRefGoogle Scholar
  102. O'Connor, J.E., and Costell, M. (1990). New roles of carnitine metabolism in ammonia toxicity. In (A. Grisolía, V. Felipo, and M.D. Miñana, eds.), Cirrhosis, Hepatic Encephalopathy and Ammonium Toxicity, Plenum Press, New York, pp. 183–195.Google Scholar
  103. O'Grady, J.G., Alexander, G.J.M., Hayllar, K.M., and Williams, R. (1989). Early indicators of prognosis in fulminant hepatic failure. Gastroenterology 97:439–445.PubMedGoogle Scholar
  104. Olson, J.E., and Evers, J.A. (1992). Correlations between energy metabolism, ion transport, and water content in astrocytes. Can. J. Physiol. Pharmacol. 70(Suppl.):S350–S355.PubMedGoogle Scholar
  105. Papadopoulos, V. (1993). Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: Biological role in steroidogenic cell function. Endocr. Rev. 14:222–240.PubMedCrossRefGoogle Scholar
  106. Park, C.H., Carboni, E., Wood, P.L., and Gee, K.W. (1996). Characterization of peripheral benzodiazepine type sites in a cultured murine BV-2 microglial cell line. Glia 16:65–70.PubMedCrossRefGoogle Scholar
  107. Parola, A.L., Yamamura, H.I., and Laird, H.E.I. (1993). Peripheral-type benzodiazepine receptors. Life Sci. 52:1329–1342.PubMedCrossRefGoogle Scholar
  108. Pastorino, J.G., Simbula, G., Yamamoto, K., Glascott, P.A., Jr., Rothman, R.J., and Farber, J.L. (1996). The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J. Biol. Chem. 271:29792–29798.PubMedGoogle Scholar
  109. Peeling, J., Shoemaker, L., Gauthier, T., Benarroch, A., Sutherland, G.R., and Minuk, G.Y. (1993). Cerebral metabolic and histological effects of thioacetamide-induced liver failure. Am. J. Physiol. Gastrointest. Liver Physiol. 265:G572–G578.Google Scholar
  110. Pfeuffer, J., Bröer, S., Bröer, A., Lechte, M., Flögel, U., and Leibfritz, D. (1998). Expression of aquaporins in Xenopus laevis oocytes and glial cells as detected by diffusion-weighted 1H NMR spectroscopy and photometric swelling assay. Biochim. Biophys. Act. Mol. Cell Res. 1448:27–36.Google Scholar
  111. Preston, G.M., and Agre, P. (1991). Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: Member of an ancient channel family. Proc. Natl. Acad. Sci. U.S.A. 88:11110–11114.PubMedGoogle Scholar
  112. Rama Rao, K.V., Bai, G., Jayakumar, A.R., and Norenberg, M.D. (2001). Role of the peripheral benzodiazepine receptor and neurosteroids in the induction of the mitochondrial permeability transition in cultured astrocytes. J. Neurochem. 78(Suppl. 1):25.Google Scholar
  113. Rama Rao, K.V., Chen, M., Simard, J.M., and Norenberg, M.D. (2003a). Suppression of ammonia-induced astrocyte swelling by cyclosporin A. J. Neurosci. Res. 74:891–897.CrossRefGoogle Scholar
  114. Rama Rao, K.V., Chen, M., Simard, J.M., and Norenberg, M.D. (2003b). Increased aquaporin-4 expression in ammonia-treated cultured astrocytes. NeuroReport 14:2379–2382.Google Scholar
  115. Rama Rao, K.V., Jayakumar, A.R., and Norenberg, M.D. (2003c). Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochem. Int. 43:517–523.CrossRefGoogle Scholar
  116. Rama Rao, K.V., Jayakumar, A.R., and Norenberg, M.D. (2005a). Differential response of glutamine in cultured neurons and astrocytes. J. Neurosci. Res. 79:193–199.CrossRefGoogle Scholar
  117. Rama Rao, K.V., and Norenberg, M.D. (2001). Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab. Brain Dis. 16:67–78.Google Scholar
  118. Rama Rao, K.V., Jayakumar, A.R., and Norenberg, M.D. (2005b). Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. Neurochem. Int. 47:31–38.Google Scholar
  119. Rao, V.L.R., Audet, R.M., and Butterworth, R.F. (1995). Increased nitric oxide synthase activities and L-[3H]arginine uptake in brain following portacaval anastomosis. J. Neurochem. 65:677–681.PubMedGoogle Scholar
  120. Rao, V.L.R., Audet, R.M., and Butterworth, R.F. (1997). Increased neuronal nitric oxide synthase expression in brain following portacaval anastomosis. Brain Res. 765:169–172.PubMedCrossRefGoogle Scholar
  121. Rao, V.L.R., and Murthy, Ch.R.K. (1992). Ammonia-induced alterations in the metabolism of glutamate and aspartate in neuronal perikarya and synaptosomes of rat cerebellum. Metab. Brain Dis. 7:51–61.PubMedGoogle Scholar
  122. Ringe, B., Lubbe, N., Kuse, E., Frei, U., and Pichlmayr, R. (1993). Total hepatectomy and liver transplantation as two-stage procedure. Ann. Surg. 218:3–9.PubMedGoogle Scholar
  123. Rose, C., Michalak, A., Pannunzio, M., Chatauret, N., Rambaldi, A., and Butterworth, R.F. (2000). Mild hypothermia delays the onset of coma and prevents brain edema and extracellular brain glutamate accumulation in rats with acute liver failure. Hepatology 31:872–877.PubMedCrossRefGoogle Scholar
  124. Rose, C., Michalak, A., Rao, K.V.R., Quack, G., Kircheis, G., and Butterworth, R.F. (1999). L-ornithine-L-aspartate lowers plasma and cerebrospinal fluid ammonia and prevents brain edema in rats with acute liver failure. Hepatology 30:636–640.PubMedCrossRefGoogle Scholar
  125. Rozga, J., Podesta, L., LePage, E., Hoffman, A., Morsiani, E., Sher, L., Woolf, G.M., Makowka, L., and Demetriou, A.A. (1993). Control of cerebral oedema by total hepatectomy and extracorporeal liver support in fulminant hepatic failure. Lancet 342:898–899.PubMedCrossRefGoogle Scholar
  126. Scarlett, J.L., Packer, M.A., Porteous, C.M., and Murphy, M.P. (1996). Alterations to glutathione and nicotinamide nucleotides during the mitochondrial permeability transition induced by peroxynitrite. Biochem. Pharmacol. 52:1047–1055.PubMedCrossRefGoogle Scholar
  127. Schiodt, F.V., Atillasoy, E., Shakil, A.O., Schiff, E.R., Caldwell, C., Kowdley, K.V., Stribling, R., Crippin, J.S., Flamm, S., Somberg, K.A., Rosen, H., McCashland, T.M., Hay, J.E., and Lee, W.M. (1999). Etiology and outcome for 295 patients with acute liver failure in the United States. Liver Transplant. Surg. 5:29– 34.Google Scholar
  128. Schliess, F., Görg. B., Fischer, R., Desjardins, P., Bidmon, H.J., Herrmann, A., Butterworth, R.F., Zilles, K., and Häussinger, D. (2002). Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J. 16:739–741.PubMedGoogle Scholar
  129. Schousboe, A., Hertz, L., Svenneby, G., and Kvamme, E. (1979). Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J. Neurochem. 32:943–950.PubMedGoogle Scholar
  130. Shiga, Y., Onodera, H., Matsuo, Y., and Kogure, K. (1992). Cyclosporin A protects against ischemia-reperfusion injury in the brain. Brain Res. 595:145–148.PubMedCrossRefGoogle Scholar
  131. Smith, S.J. (1992). Do astrocytes process neural information? In (A.C.H. Yu, L. Hertz, M.D. Norenberg, E. Sykova, and S. Waxman, eds.), Neuronal–Astrocytic Interactions: Implications for Normal and Pathological CNS Function, Elsevier, Amsterdam. 119–136.Google Scholar
  132. Song, G., Dhodda, V.K., Blei, A.T., Dempsey, R.J., and Rao, V.L. (2002). GeneChip analysis shows altered mRNA expression of transcripts of neurotransmitter and signal transduction pathways in the cerebral cortex of portacaval shunted rats. J. Neurosci. Res. 68:730–737.PubMedCrossRefGoogle Scholar
  133. Staub, F., Peters, J., Kempski, O., Schneider, G.H., Schürer, L., and Baethmann, A. (1993). Swelling of glial cells in lactacidosis and by glutamate: Significance of Cl-transport. Brain Res. 610:69–74.PubMedCrossRefGoogle Scholar
  134. Staub, F., Winkler, A., Peters, J., Kempski, O., Kachel, V., and Baethmann, A. (1994). Swelling, acidosis, and irreversible damage of glial cells from exposure to arachidonic acid in vitro. J. Cereb. Blood Flow Metab. 14:1030–1039.PubMedGoogle Scholar
  135. Subbalakshmi, G.Y., and Murthy, C.R. (1985). Isolation of astrocytes, neurons, and synaptosomes of rat brain cortex: Distribution of enzymes of glutamate metabolism. Neurochem. Res. 10:239–250.PubMedCrossRefGoogle Scholar
  136. Sugimoto, H., Koehler, R.C., Wilson, D.A., Brusilow, S.W., and Traystman, R.J. (1997). Methionine sulfoximine, a glutamine synthetase inhibitor, attenuates increased extracellular potassium activity during acute hyperammonemia. J. Cereb. Blood Flow Metab. 17:44–49.PubMedGoogle Scholar
  137. Swain, M., Butterworth, R.F., and Blei, A.T. (1992). Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 15:449–453.PubMedGoogle Scholar
  138. Takahashi, H., Koehler, R.C., Brusilow, S.W., and Traystman, R.J. (1991). Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am. J. Physiol. 261:H825–H829.PubMedGoogle Scholar
  139. Takahashi, H., Koehler, R.C., Hirata, T., Brusilow, S.W., and Traystman, R.J. (1992). Restoration of cerebrovascular CO2 responsivity by glutamine synthesis inhibition in hyperammonemic rats. circ. Res. 71:1220–1230.PubMedGoogle Scholar
  140. Taniguchi, M., Yamashita, T., Kumura, E., Tamatani, M., Kobayashi, A., Yokawa, T., Maruno, M., Kato, A., Ohnishi, T., Kohmura, E., Tohyama, M., and Yoshimine, T. (2000). Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Mol. Brain Res. 78:131–137.PubMedCrossRefGoogle Scholar
  141. Therrien, G., and Butterworth, R.F. (1991). Cerebrospinal fluid amino acids in relation to neurological status in experimental portal-systemic encephalopathy. Metab. Brain Dis. 6:65–74.PubMedGoogle Scholar
  142. Therrien, G., Giguère, J.F., and Butterworth, R.F. (1991). Increased cerebrospinal fluid lactate reflects deterioration of neurological status in experimental portal-systemic encephalopathy. Metab. Brain Dis. 6:225– 231.PubMedGoogle Scholar
  143. Traber, P.G., Dal Canto, M.C., Ganger, D., and Blei, A.T. (1987). Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: Ultrastructure and integrity of the blood–brain barrier. Hepatology 7:1272–1277.PubMedGoogle Scholar
  144. Umenishi, F., and Verkman, A.S. (1998). Isolation and functional analysis of alternative promoters in the human aquaporin-4 water channel gene. Genome 50:373–377.Google Scholar
  145. Upreti, K.K., Das, M., and Khanna, S.K. (1991). Role of antioxidants and scavengers on argemone oil-induced toxicity in rats. Arch. Environ. Contam. Toxicol. 20:531–537.PubMedCrossRefGoogle Scholar
  146. Vizuete, M.L., Venero, J.L., Vargas, C., Ilundain, A.A., Echevarria, M., Machado, A., and Cano, J. (1999). Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: Potential role in brain edema. Neurobiol. Dis. 6:245–258.PubMedCrossRefGoogle Scholar
  147. Voorhies, T.M., Ehrlich, M.E., Duffy, T.E., Petito, C.K., and Plum, F. (1983). Acute hyperammonemia in the young primate. Physiologic and neuropathological correlates. Pediatr. Res. 17:970–975.PubMedGoogle Scholar
  148. Waniewski, R. (1992). Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. J. Neurochem. 58:167–174.PubMedGoogle Scholar
  149. Ware, A.J., D'Agostino, A.N., and Combes, B. (1971). Cerebral edema: A major complication of massive hepatic necrosis. Gastroenterology 61:877–884.PubMedGoogle Scholar
  150. Warren, K.S., and Schenker, S. (1964). Effect of an inhibition of glutamine synthesis (methionine sulfoximine) on ammonia toxicity and metabolism. J. Lab. Clin. Med. 64:442–449.PubMedGoogle Scholar
  151. Warskulat, U., Görg, B., Bidmon, H.J., Muller, H.W., Schliess, F., and Häussinger, D. (2002). Ammonia-induced heme oxygenase-1 expression in cultured rat astrocytes and rat brain in vivo. Glia 40:324–336.PubMedCrossRefGoogle Scholar
  152. Willard-Mack, C.L., Koehler, R.C., Hirata, T., Cork, L.C., Takahashi, H., Traystman, R.J., and Brusilow, S.W. (1996). Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71:589–599.PubMedCrossRefGoogle Scholar
  153. Williams, R., and Wendon, J. (1994). Indications for orthotopic liver transplantation in fulminant liver failure. Hepatology 20:S5–S10.PubMedCrossRefGoogle Scholar
  154. Würdig, S., and Kugler, P. (1991). Histochemistry of glutamate metabolizing enzymes in the rat cerebellar cortex. Neurosci. Lett. 130:165–168.PubMedGoogle Scholar
  155. Xiong, Y., Peterson, P.L., and Lee, C.P. (1999). Effect of N-acetylcysteine on mitochondrial function following traumatic brain injury in rats. J. Neurotrauma 16:1067–1082.PubMedCrossRefGoogle Scholar
  156. Yamamoto, M., Yoneda, K., Asai, K., Sobue, K., Tada, T., Fujita, Y., Katsuya, H., Fujita, M., Aihara, N., Mase, M., Yamada, K., Miura, Y., and Kato, T. (2001). Alterations in the expression of the AQP family in cultured astrocytes during hypoxia and reoxygenation. Brain Res. Mol. Brain Res. 90:26–38.PubMedGoogle Scholar
  157. Yao, H., Sadoshima, S., Fujii, K., Kusada, K., Ishitsuka, T., Tamaki, K., and Fujishima, M. (1987). Cerebrospinal fluid lactate in patients with hepatic encephalopathy. Eur. Neurol. 27:182–187.PubMedGoogle Scholar
  158. Zamzami, N., Hirsch, T., Dallaporta, B., Petit, P.X., and Kroemer, G. (1997). Mitochondrial implication in accidental and programmed cell death: Apoptosis and necrosis. J. Bioenerg. Biomembr. 29:185–193.PubMedCrossRefGoogle Scholar
  159. Zielinska, M., Law, R.O., and Albrecht, J. (2003). Excitotoxic mechanism of cell swelling in rat cerebral cortical slices treated acutely with ammonia. Neurochem. Int. 43:299–303.PubMedCrossRefGoogle Scholar
  160. Zoratti, M., and Szabo, I. (1995). The mitochondrial permeability transition. Biochim. Biophys. Act. 1241:139–176.Google Scholar
  161. Zwingmann, C., Chatauret, N., Rose, C., Leibfritz, D., and Butterworth, R.F. (2004). Selective alterations of brain osmolytes in acute liver failure: Protective effect of mild hypothermia. Brain Res. 999:118–123.PubMedCrossRefGoogle Scholar
  162. Zwingmann, C., Flogel, U., Pfeuffer, J., and Leibfritz, D. (2000). Effects of ammonia exposition on glioma cells: Changes in cell volume and organic osmolytes studied by diffusion-weighted and high-resolution NMR spectroscopy. Dev. Neurosci. 22:463–471.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. D. Norenberg
    • 1
    • 2
    • 3
    • 4
    Email author
  • K. V. Rama Rao
    • 2
  • A. R. Jayakumar
    • 2
  1. 1.Veterans Affairs Medical CenterMiamiFlorida
  2. 2.Department of PathologyUniversity of Miami School of MedicineMiami
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of Miami School of MedicineMiami
  4. 4.Department of Pathology (D-33)University of Miami School of MedicineMiami

Personalised recommendations