Advertisement

Metabolic Brain Disease

, Volume 20, Issue 3, pp 169–179 | Cite as

Ammonia and Hepatic Encephalopathy: The More Things Change, the More They Remain the Same

  • D. L. Shawcross
  • S. W. M. Olde Damink
  • R. F. Butterworth
  • R. JalanEmail author
Article

Abstract

Ammonia is thought to be central in the pathogenesis of hepatic encephalopathy and has been of importance to generations dating back to the early Egyptians. Hippocrates 2500 years ago described ‘encephalopathy’ simply translated as ‘inside head suffering.’ Over 1500 papers have been written on hepatic encephalopathy since 1966, but only a minority of these actually refer to the original observation of hepatic encephalopathy and the link with ammonia made by Marcel Nencki and Ivan Pavlov in 1893 with very little acknowledgement being made to the early landmark studies which described the importance of the muscle and kidneys in maintaining ammonia homeostasis as well as the liver and gut. Furthermore, infection was recognized as being an important modulator of brain function by the ancient Greek physicians and philosophers. This review focuses upon the original experiments of Nencki and Pavlov and describes how they fit into what we understand about the pathophysiology and treatment of hepatic encephalopathy today.

Keywords

Ammonia hepatic encephalopathy nitrogen metabolism history of medicine 

Abbreviations:

HE

hepatic encephalopathy

PCS

portacaval shunt

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balata, S., Olde Damink, S., Ferguson, K., Marshall, I., Hayes, P., Deutz, N., Williams, R., Wardlaw, J., and Jalan, R. (2003). Changes in neuropsychology, magnetic resonance spectroscopy and magnetization transfer following induced hyperammonemia. Hepatology 37:931–939.CrossRefPubMedGoogle Scholar
  2. Budge, E. (1985). Gods of the Egyptians, Dover, New York.Google Scholar
  3. Chadwick, J., and Mann, W. (1950). The Medical Works of Hippocrates, Blackwell, Oxford, pp. 50, 223.Google Scholar
  4. Clemmesen, J., Larsen, F., Kondrup, J., Hansen, B., and Ott, P. (1999). Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 29:648–653.CrossRefPubMedGoogle Scholar
  5. Cordoba, J., Alonso, J., Rovira, A., Jacas, C., Sanpedro, F., Castells, L., Vargas, V., Maragrit, C., Kullsevsky, J., Esteban, R., Guardia, J. (2001). The development of low-grade cerebral oedema in cirrhosis is supported by the evolution of 1H-magnetic resonance abnormalities after liver transplantation. Journal of Hepatology 35:598–604.CrossRefPubMedGoogle Scholar
  6. Dejong, C., Deutz, N., and Soeters, P. (1993). Renal ammonia and glutamine metabolism during liver insufficiency-induced hyperammonemia in the rat. J. Clin. Invest. 92:2834–2840.PubMedGoogle Scholar
  7. Floch, M., Katz, J., and Conn, H. (1970). Qualitative and quantitative relationships of the faecal flora in cirrhotic patients with portal systemic encephalopathy and following portacaval anastomosis. Gastroenterology 59: 70–75.PubMedGoogle Scholar
  8. Hagen, S., Wu, H., and Morrison, S. (2000). NH(4)Cl inhibition of acid secretion: Possible involvement of an apical (+) channel in bullfrog oxyntic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 279:G400– G410.PubMedGoogle Scholar
  9. Hahn, M., Massen, O., Nencki, M., and Pavlov, I. (1893). Die Eck’sche fistel zwischen der unteren hohlvene und der pfortader und ihre folgen fur den organismus. Arch. Exp. Pathol. Pharm. 32:161–210.CrossRefGoogle Scholar
  10. Jalan, R., Olde Damink, S.W.M., Hayes, P.C., Deutz, N.E.P., and Lee, A. (2004). Pathogenesis of intracranial hypertension in acute liver failure: Inflammation, ammonia and cerebral blood flow. J. Hepatol. 41:613–620.CrossRefPubMedGoogle Scholar
  11. Jalan, R., Olde Damink, S.W.M., Deutz, N.E.P., and Lee, A., and Hayes, P.C. (1999). Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure. Lancet 354:1164–1168.CrossRefPubMedGoogle Scholar
  12. Lockwood, A., McDonald, J., Reiman, R., Gelbard, A., Laughlin, J., Duffy, T., et al. (1979). The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J. Clin. Invest. 63:449– 460.PubMedGoogle Scholar
  13. Lockwood, A., Yap, E., and Wong, W. (1991). Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy. J. Cerebr. Blood Flow Metab. 11:337–341.Google Scholar
  14. Marcaida, G., Felipo, V., Hermenegildo, C., Minana, M.D., and Grisolia, S. (1992). Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett 296:67–68.CrossRefPubMedGoogle Scholar
  15. Master, S., Gottstein, J., and Blei, A. (1999). Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 30:876–880.CrossRefPubMedGoogle Scholar
  16. Mendez, M. (1996). Delirium. In (W. Bradley, R. Daroff, and G. Fenichel, eds), Neurology in Clinical Practice, Butterworth-Heinemann, Boston, pp. 29–38.Google Scholar
  17. Nance, F., Kayfman, H., and Kline, D. (1974). Role of urea in the hyperammonemia of germ-free Eck fistula dogs. Gastroenterology 66:108–112.PubMedGoogle Scholar
  18. Neiger, R., and Simpson, K. (2000). Helicobacter infection in dogs and cats: Facts and fiction. J. Vet. Int. Med. 14:125–133.CrossRefGoogle Scholar
  19. Nencki, M., Pawlow, J., and Zaleski, J. (1896). Ueber den ammoniakgehalt des blutes under der organe und die harnstoffbildung bei den saugethieren. Arch. Exp. Pathol. Pharmakol. 37:26–51.CrossRefGoogle Scholar
  20. Nencki, M., and Zaleski, J. (1895). Ueber die Bestimmung des Ammoniaks in Thierischen Fluessigkeiten und Geweben. Arch. Exp. Pathol. Pharmakol. 36:385–396.CrossRefGoogle Scholar
  21. Olde Damink, S., Deutz, N., Dejong, C., Soeters, P., and Jalan, R. (2002a). Interorgan ammonia metabolism in liver failure. Neurochem. Int. 41:177–188.CrossRefGoogle Scholar
  22. Olde Damink, S., Jalan, R., Hayes, P., Redhead, D., Deutz, N., and Soeters, P. (2002b). Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36:1163–1171.CrossRefGoogle Scholar
  23. Osler, W. (1892). The Principles and Practice of Medicine, Appleton, New York, pp. 114–118.Google Scholar
  24. Owen, E., Mozzoli, M., Reichle, F., Kreulen, T., Owen, R., Boden, G., et al. (1985). Hepatic and renal metabolism before and after portosystemic shunts in patients with cirrhosis. J. Clin. Invest. 76:1209–1217.PubMedGoogle Scholar
  25. Owen, E., Tyor, M., Flanagan, J., and Berry, J. (1960). The kidney as a source of blood ammonia in patients with liver disease: The effect of acetazolamaide. J. Clin. Invest. 39:288–294.PubMedGoogle Scholar
  26. Phillips, G., Schwartz, R., Gabuzda, G., and Davidson, C. (1952). The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. New Engl. J. Med. 247:239–246.PubMedGoogle Scholar
  27. Pickett, J., et al. (2000). The American Heritage Dictionary of the English Language, Houghton Mifflin, Boston.Google Scholar
  28. Rao, K.V., and Norenberg, M.D. (2001). Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab. Brain Dis. 16:67–78.CrossRefPubMedGoogle Scholar
  29. Rolando, N., Wade, J., Davalos, M., Wendon, J., Philpott-Howard, J., and Williams, R. (2000). The systemic inflammatory response syndrome in acute liver failure. Hepatology 32:734–739.CrossRefPubMedGoogle Scholar
  30. Schalm, S., and van der Mey, T. (1979). Hyperammonemia coma after hepatectomy in germ-free rats. Gastroenterology 77:231–234.PubMedGoogle Scholar
  31. Shawcross, D., Davies, N., Williams, R., and Jalan, R. (2004). Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J. Hepatol. 40:247–254.CrossRefPubMedGoogle Scholar
  32. Tan, K.H., Harrington, S., Purcell, W.M., and Hurst, R.D. (2004). Peroxynitrite mediates nitric oxide-induced blood-brain barrier damage. Neurochem. Res. 29:579–587.CrossRefPubMedGoogle Scholar
  33. Todes, D. (2002). Pavlov’s Physiology Factory: Experiment, Interpretation, Laboratory Enterprise, The John Hopkins University Press, Baltimore.Google Scholar
  34. Traber, P., Dalcanto, M., Ganger, D., Blei, A.T. (1989). Effect of body temperature on brain aedema and encephalopathy in the rat after hepatic devascularisation. Gastroenterology 96:885–891.PubMedGoogle Scholar
  35. Vasconez, C., Ignasi Elizalde, J., Llach, J., Gines, A., de la Rosa, C., Fernadez, R., Mas, A., Santamaria, J., Bordas, J., Pique, J., and Teres, J. (1999). Helicobacter pylori, hyperammonemia and subclinical portosystemic encephalopathy: Effects of eradication. J. Hepatol. 30:260–264.CrossRefPubMedGoogle Scholar
  36. Weber, F.J., and Veach, G. (1979). The importance of the small intestine in gut ammonium production in the fasting dog. Gastroenterology 77:235–240.PubMedGoogle Scholar
  37. Webster, L., and Gabuzda, G. (1958). Ammonium uptake by the extremities and brain in hepatic coma. J. Clin. Invest. 37:414–424.PubMedGoogle Scholar
  38. Windmueller, H. (1982). Glutamine utilization by the small intestine. Adv. Enzyme Regul. 53:210–237.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • D. L. Shawcross
    • 1
  • S. W. M. Olde Damink
    • 2
  • R. F. Butterworth
    • 3
  • R. Jalan
    • 1
    • 4
    Email author
  1. 1.Liver Failure GroupInstitute of HepatologyLondonUnited Kingdom
  2. 2.Department of Surgery, Academic HospitalMaastricht UniversityThe Netherlands
  3. 3.Neuroscience Research UnitHôpital Saint-Luc (CHUM)MontréalCanada
  4. 4.Liver Failure GroupInstitute of HepatologyLondonUnited Kingdom

Personalised recommendations