Skip to main content

Advertisement

Log in

The role of endoglin and its soluble form in pathogenesis of preeclampsia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Preeclampsia remains till today a leading cause of maternal and fetal morbidity and mortality. Pathophysiology of the disease is not yet fully elucidated, though it is evident that it revolves around placenta. Cellular ischemia in the preeclamptic placenta creates an imbalance between angiogenic and anti-angiogenic factors in maternal circulation. Endoglin, a transmembrane co-receptor of transforming growth factor β (TGF-β) demonstrating angiogenic effects, is involved in a variety of angiogenesis-dependent diseases with endothelial dysfunction, including preeclampsia. Endoglin expression is up-regulated in preeclamptic placentas, through mechanisms mainly induced by hypoxia, oxidative stress and oxysterol-mediated activation of liver X receptors. Overexpression of endoglin results in an increase of its soluble form in maternal circulation. Soluble endoglin represents the extracellular domain of membrane endoglin, cleaved by the action of metalloproteinases, predominantly matrix metalloproteinase-14. Released in circulation, soluble endoglin interferes in TGF-β1 and activin receptor-like kinase 1 signaling pathways and inhibits endothelial nitric oxide synthase activation, consequently deranging angiogenesis and promoting vasoconstriction. Due to these properties, soluble endoglin actively contributes to the impaired placentation observed in preeclampsia, as well as to the pathogenesis and manifestation of its clinical signs and symptoms, especially hypertension and proteinuria. The significant role of endoglin and soluble endoglin in pathophysiology of preeclampsia could have prognostic, diagnostic and therapeutic perspectives. Further research is essential to extensively explore the potential use of these molecules in the management of preeclampsia in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable; all information is gathered from published articles.

References

  1. Committee on Practice Bulletins—Obstetrics (2019) ACOG practice bulletin No. 202: gestational hypertension and preeclampsia. Obstet Gynecol 133(1):1. https://doi.org/10.1097/AOG.0000000000003018

    Article  Google Scholar 

  2. Lowe SA, Bowyer L, Lust K, McMahon LP, Morton M, North RA, Paech M, Said JM (2015) SOMANZ guidelines for the management of hypertensive disorders of pregnancy. Aust New Zeal J Obstet Gynaecol 55(5):e1-29. https://doi.org/10.1111/ajo.12399

    Article  Google Scholar 

  3. Magee LA, Pels A, Helewa M, Rey E, von Dadelszen P, Canadian Hypertensive Disorders of Pregnancy Working Group (2014) Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy: executive summary. J Obstet Gynaecol Canada 36(5):416–441. https://doi.org/10.1016/s1701-2163(15)30588-0

    Article  Google Scholar 

  4. Magee LA, von Dadelszen P, Stones W, Mathai M (2016) The FIGO Textbook of pregnancy hypertension: an evidence-based guide to monitoring, prevention and management. The Global Library of Women’s Medicine, London

    Google Scholar 

  5. Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, De Groot CJM, Hofmeyr GJ (2016) Pre-eclampsia. Lancet 387(10022):999–1011. https://doi.org/10.1016/S0140-6736(15)00070-7

    Article  PubMed  Google Scholar 

  6. Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, Divakar H, McAuliffe F, da Silva Costa F, von Dadelszen P, McIntyre HD, Kihara AB, Di Renzo GC, Romero R, D’Alton M, Berghella V, Nicolaides KH, Hod M (2019) The international federation of gynecology and obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int J Gynecol Obstet 145(Suppl 1):1–33. https://doi.org/10.1002/ijgo.12802

    Article  Google Scholar 

  7. NICE (2019) Hypertension in pregnancy: diagnosis and management. Am J Obs Gynecol 77(1):S1-s22. https://doi.org/10.1111/j.1479-828X.2009.01003.x

    Article  Google Scholar 

  8. Abalos E, Cuesta C, Grosso AL, Chou D, Say L (2013) Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol 170(1):1–7. https://doi.org/10.1016/j.ejogrb.2013.05.005

    Article  PubMed  Google Scholar 

  9. Mayrink J, Costa ML, Cecatti JG (2018) Preeclampsia in 2018: revisiting concepts, physiopathology, and prediction. Sci World J 2018:6268276. https://doi.org/10.1155/2018/6268276

    Article  CAS  Google Scholar 

  10. Phipps E, Prasanna D, Brima W, Jim B (2016) Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin J Am Soc Nephrol 11(6):1102–1113. https://doi.org/10.2215/CJN.12081115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rana S, Lemoine E, Granger J, Karumanchi SA (2019) Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res 124(7):1094–1112. https://doi.org/10.1161/CIRCRESAHA.118.313276

    Article  CAS  PubMed  Google Scholar 

  12. Gathiram P, Moodley J (2016) Pre-eclampsia: Its pathogenesis and pathophysiology. Cardiovasc J Afr 27(2):71–78. https://doi.org/10.5830/CVJA-2016-009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Romero R, Chaiworapongsa T (2013) Preeclampsia: a link between trophoblast dysregulation and an antiangiogenic state. J Clin Invest 123(7):2775–2777. https://doi.org/10.1172/JCI70431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karumanchi SA (2016) Angiogenic factors in preeclampsia: from diagnosis to therapy. Hypertension 67(6):1072–1079. https://doi.org/10.1161/HYPERTENSIONAHA.116.06421

    Article  CAS  PubMed  Google Scholar 

  15. Palei AC, Spradley FT, Warrington JP, George EM, Granger JP (2013) Pathophysiology of hypertension in pre-eclampsia: a lesson in integrative physiology. Acta Physiol 208(3):224–233. https://doi.org/10.1111/apha.12106

    Article  CAS  Google Scholar 

  16. Quackenbush EJ, Letarte M (1985) Identification of several cell surface proteins of non-T, non-B acute lymphoblastic leukemia by using monoclonal antibodies. J Immunol 134(2):1276–1285

    CAS  PubMed  Google Scholar 

  17. Gougos A, Letarte M (1990) Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 265(15):8361–8364

    Article  CAS  PubMed  Google Scholar 

  18. Velasco S, Alvarez-Munoz P, Pericacho M, Ten Dijke P, Bernabeu C, Lopez-Novoa JM, Rodriguez-Barbero A (2008) L- and S-endoglin differentially modulate TGFβ1 signaling mediated by ALK1 and ALK5 in L6E9 myoblasts. J Cell Sci 121(Pt 6):913–919. https://doi.org/10.1242/jcs.023283

    Article  CAS  PubMed  Google Scholar 

  19. Shovlin CL, Hughes JMB, Scott J, Seidman CE, Seidman JG (1997) Characterization of endoglin and identification of novel mutations in hereditary hemorrhagic telangiectasia. Am J Hum Genet 61(1):68–79. https://doi.org/10.1086/513906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ten Dijke P, Goumans MJ, Pardali E (2008) Endoglin in angiogenesis and vascular diseases. Angiogenesis 11(1):79–89. https://doi.org/10.1007/s10456-008-9101-9

    Article  CAS  PubMed  Google Scholar 

  21. Sánchez-Elsner T, Botella LM, Velasco B, Langa C, Bernabéu C (2002) Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-β pathways. J Biol Chem 277(46):43799–43808. https://doi.org/10.1074/jbc.M207160200

    Article  CAS  PubMed  Google Scholar 

  22. Henry-Berger J, Mouzat K, Baron S, Bernabeu C, Marceau G, Saru JP, Lobaccaro JMA, Caira F (2008) Endoglin (CD105) expression is regulated by the liver X receptor alpha (NR1H3) in human trophoblast cell line JAR1. Biol Reprod 78(6):968–975. https://doi.org/10.1095/biolreprod.107.066498

    Article  CAS  PubMed  Google Scholar 

  23. Oujo B, Perez-Barriocanal F, Bernabeu C, Lopez-Novoa J (2013) Membrane and soluble forms of endoglin in preeclampsia. Curr Mol Med 13(8):1345–1357. https://doi.org/10.2174/15665240113139990058

    Article  CAS  PubMed  Google Scholar 

  24. Fonsatti E, Maio M (2004) Highlights on endoglin (CD105): from basic findings towards clinical applications in human cance. J Transl Med 2(1):18. https://doi.org/10.1186/1479-5876-2-18

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM, Syro LV, Kovacs K, Lloyd RV (2011) Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res 31(6):2283–2290

    CAS  PubMed  Google Scholar 

  26. Gore B, Iziki M, Mercier O, Dewachter L, Fadel E, Humbert M, Dartevelle P, Simonneau G, Naeije R, Lebrin F, Eddahibi S (2014) Key role of the endothelial TGF-β/ALK1/endoglin signaling pathway in humans and rodents pulmonary hypertension. PLoS ONE 9(6):e100310. https://doi.org/10.1371/journal.pone.0100310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pomeraniec L, Hector-Greene M, Ehrlich M, Blobe GC, Henis YI (2015) Regulation of TGF-β receptor hetero-oligomerization and signaling by endoglin. Mol Biol Cell 26(17):3117–3127. https://doi.org/10.1091/mbc.E15-02-0069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Valluru M, Staton CA, Reed MWR, Brown NJ (2011) Transforming growth factor-β and endoglin signaling orchestrate wound healing. Front Physiol 2:89. https://doi.org/10.3389/fphys.2011.00089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang Y, Yang X, Friesel RE, Vary CPH, Liaw L (2011) Mechanisms of TGF-β-induced differentiation in human vascular smooth muscle cells. J Vasc Res 48:485–494. https://doi.org/10.1159/000327776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ray BN, Lee NY, How T, Blobe GC (2010) ALK5 phosphorylation of the endoglin cytoplasmic domain regulates Smad1/5/8 signaling and endothelial cell migration. Carcinogenesi 31(3):435–441. https://doi.org/10.1093/carcin/bgp327

    Article  CAS  Google Scholar 

  31. Romero D, Terzic A, Conley BA, Craft CS, Jovanovic B, Bergan RC, Vary CPH (2010) Endoglin phosphorylation by ALK2 contributes to the regulation of prostate cancer cell migration. Carcinogenesis 31(3):359–366. https://doi.org/10.1093/carcin/bgp217

    Article  CAS  PubMed  Google Scholar 

  32. Rossi E, Bernabeu C, Smadja DM (2019) Endoglin as an adhesion molecule in mature and progenitor endothelial cells: a function beyond TGF-β. Front Med 6(1):1–8. https://doi.org/10.3389/fmed.2019.00010

    Article  CAS  Google Scholar 

  33. Goumans MJ, Dijke PT (2018) TGF-β signaling in control of cardiovascular function. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022210

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kritharis A, Al-Samkari H, Kuter DJ (2018) Hereditary hemorrhagic telangiectasia: diagnosis and management from the hematologist’s perspective. Haematologica 103(9):1433. https://doi.org/10.3324/HAEMATOL.2018.193003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vicen M, Vitverova B, Havelek R, Blazickova K, Machalek M, Rathouska J, Najmanova I, Dolezelova E, Prasnicka A, Sternak M, Bernabeu C, Nachtigal P (2019) Regulation and role of endoglin in cholesterol-induced endothelial and vascular dysfunction in vivo and in vitro. FASEB J 33(5):6099–6114. https://doi.org/10.1096/fj.201802245R

    Article  CAS  PubMed  Google Scholar 

  36. Vicen M, Igreja Sa IV, Tripska K, Vitverova B, Najmanova I, Eissazadeh S, Micuda S, Nachtigal P (2021) Membrane and soluble endoglin role in cardiovascular and metabolic disorders related to metabolic syndrome. Cell Mol Life Sci 78(8):1–14. https://doi.org/10.1007/S00018-020-03701-W

    Article  Google Scholar 

  37. Jerkic M, Letarte M (2015) Increased endothelial cell permeability in endoglin-deficient cells. FASEB J 29(9):3678–3688. https://doi.org/10.1096/FJ.14-269258

    Article  CAS  PubMed  Google Scholar 

  38. Toporsian M, Gros R, Kabir MG, Vera S, Govindaraju K, Eidelman DH, Husain M, Letarte M (2005) A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia. Circ Res 96(6):684–692. https://doi.org/10.1161/01.RES.0000159936.38601.22

    Article  CAS  PubMed  Google Scholar 

  39. Schoonderwoerd MJA, Goumans MJTH, Hawinkels LJAC (2020) Endoglin: beyond the endothelium. Biomolecules 10(2):1–18. https://doi.org/10.3390/biom10020289

    Article  CAS  Google Scholar 

  40. Rossi E, Sanz-Rodriguez F, Eleno N, Duwell A, Blanco FJ, Langa C, Botella LM, Cabanas C, Lopez-Novoa JM, Bernabeu C (2013) Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood 121(2):403–415. https://doi.org/10.1182/BLOOD-2012-06-435347

    Article  CAS  PubMed  Google Scholar 

  41. Nachtigal P, Vecerova LZ, Rathouska J, Strasky Z (2012) The role of endoglin in atherosclerosis. Atherosclerosis 224(1):4–11. https://doi.org/10.1016/J.ATHEROSCLEROSIS.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  42. Jang YS, Choi IH (2014) Contrasting roles of different endoglin forms in atherosclerosis. Immune Netw 14(5):237. https://doi.org/10.4110/IN.2014.14.5.237

    Article  PubMed  PubMed Central  Google Scholar 

  43. Levi B, Wan DC, Glotzbach JP, Hyun J, Januszyk M, Montoro D, Sorkin M, James AW, Nelson ER, Li S, Quarto N, Lee M, Gurtner GC, Longaker MT (2011) CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor β1 (TGF-β1) signaling. J Biol Chem 286(45):39497–39509. https://doi.org/10.1074/jbc.M111.256529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338. https://doi.org/10.1038/nrneph.2016.48

    Article  CAS  PubMed  Google Scholar 

  45. Fujita K (2009) Endoglin (CD105) as a urinary and serum marker of prostate cancer. Int J Cancer 124(3):664–669. https://doi.org/10.1002/ijc.24007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kasprzak A, Adamek A (2018) Role of endoglin (CD105) in the progression of hepatocellular carcinoma and anti-angiogenic therapy. Int J Mol Sci 19(12):3887. https://doi.org/10.3390/ijms19123887

    Article  CAS  PubMed Central  Google Scholar 

  47. Perez L, Lopez JM (2014) Soluble endoglin: a biomarker or a protagonist in the pathogenesis of preeclampsia? Port JNephrol Hypertens 28(3):185–192

    Google Scholar 

  48. Gregory AL, Xu G, Sotov V, Letarte M (2014) Review: the enigmatic role of endoglin in the placenta. Placenta 35:S93-99. https://doi.org/10.1016/j.placenta.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  49. Hawinkels LJAC, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, Pardali E, Sier CFM, ten Dijke P (2010) Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res 70(10):4141–4150. https://doi.org/10.1158/0008-5472.CAN-09-4466

    Article  CAS  PubMed  Google Scholar 

  50. Venkatesha S, Toporsian M, Lam C, Hanai JI, Mammoto T, Kim YM, Bdolah Y et al (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12(6):642–649. https://doi.org/10.1038/nm1429

    Article  CAS  PubMed  Google Scholar 

  51. Lawera A, Tong Z, Thorikay M, Redgrave RE, Cai J, van Dinther M, Morrell NW, Afink GB, Charnock-Jones DS, Arthur HM, ten Dijke P, Li W (2019) Role of soluble endoglin in BMP9 signaling. Proc Natl Acad Sci U S A 116(36):17800–17808. https://doi.org/10.1073/pnas.1816661116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gilbert JS, Gilbert SAB, Arany M, Granger JP (2009) Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression. Hypertension 53(2):399–403. https://doi.org/10.1161/HYPERTENSIONAHA.108.123513

    Article  CAS  PubMed  Google Scholar 

  53. Cudmore M, Ahmad S, Al-Ani B, Fujisawa T, Coxall H, Chudasama K, Devey LR, Wigmore SJ, Abbas A, Hewett PW, Ahmed A (2007) Negative regulation of soluble Flt-1 and soluble endoglin release by heme oxygenase-1. Circulation 115(13):1789–1797. https://doi.org/10.1161/CIRCULATIONAHA.106.660134

    Article  CAS  PubMed  Google Scholar 

  54. Brownfoot FC, Hannan N, Onda K, Tong S, Kaitu’U-Lino T (2014) Soluble endoglin production is upregulated by oxysterols but not quenched by pravastatin in primary placental and endothelial cells. Placenta 35(9):724–731. https://doi.org/10.1016/j.placenta.2014.06.374

    Article  CAS  PubMed  Google Scholar 

  55. Margioula-Siarkou C, Prapas Y, Petousis S, Milias S, Ravanos K, Dagklis T, Kalogiannidis I, Mavromatidis G, Haitoglu C, Prapas N, Rousso D (2017) LIF endometrial expression is impaired in women with unexplained infertility while LIF-R expression in all infertility sub-groups. Cytokine 96:166–172. https://doi.org/10.1016/j.cyto.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  56. Li H, Yao J, Chang X, Wu J, Duan T, Wang K (2018) LIFR increases the release of soluble endoglin via the upregulation of MMP14 expression in preeclampsia. Reproduction 155(3):297–306. https://doi.org/10.1530/REP-17-0732

    Article  CAS  PubMed  Google Scholar 

  57. Margioula-Siarkou PY, Petousis S, Milias S, Ravanos K, Kalogiannidis I, Mavromatidis G, Haitoglu C, Prapas N, Rousso D (2016) LIF and LIF-R expression in the endometrium of fertile and infertile women: a prospective observational case-control study. Mol Med Rep 13(6):4721–4728. https://doi.org/10.3892/mmr.2016.5142

    Article  CAS  PubMed  Google Scholar 

  58. Liu X, Deng Q, Luo X, Chen Y, Shan N, Qi H (2016) Oxidative stress-induced Gadd45α inhibits trophoblast invasion and increases sFlt1/sEng secretions via p38 MAPK involving in the pathology of pre-eclampsia. J Matern Neonatal Med 29(23):3776–3785. https://doi.org/10.3109/14767058.2016.1144744

    Article  CAS  Google Scholar 

  59. Irani RA, Zhang Y, Zho CC, Blackwell SC, Hicks MJ, Ramin SM, Kellems RE, Xia Y (2010) Autoantibody-mediated angiotensin receptor activation contributes to preeclampsia through tumor necrosis factor-α signaling. Hypertension 55(5):1246–1253. https://doi.org/10.1161/HYPERTENSIONAHA.110.150540

    Article  CAS  PubMed  Google Scholar 

  60. Pérez-Roque L, Núñez-Gómez E, Rodríguez-Barbero A, Bernabéu C, López-Novoa JM, Pericacho M (2021) Pregnancy-induced high plasma levels of soluble endoglin in mice lead to preeclampsia symptoms and placental abnormalities. Int J Mol Sci 22(1):165. https://doi.org/10.3390/IJMS22010165

    Article  Google Scholar 

  61. Valbuena-Diez AC, Blanco FJ, Oujo B, Langa C, Gonzalez-Nunez M, Llano E, Pendas AM, Diaz M, Castrillo A, Lopez-Novoa JM, Bernabeu C (2012) Oxysterol-induced soluble endoglin release and its involvement in hypertension. Circulation 126(22):2612–2624. https://doi.org/10.1161/CIRCULATIONAHA.112.101261

    Article  CAS  PubMed  Google Scholar 

  62. Henao DE, Saleem MA (2013) Proteinuria in preeclampsia from a podocyte injury perspective. Curr Hypertens Rep 15(6):600–605. https://doi.org/10.1007/s11906-013-0400-1

    Article  CAS  PubMed  Google Scholar 

  63. Sachs N, Sonnenberg A (2013) Cell-matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol 9(4):200–210. https://doi.org/10.1038/nrneph.2012.291

    Article  CAS  Google Scholar 

  64. Craici IM, Wagner SJ, Weissgerber TL, Grande JP, Garovic VD (2014) Advances in the pathophysiology of pre-eclampsia and related podocyte injury. Kidney Int 86(2):275–285. https://doi.org/10.1038/ki.2014.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cim N, Kurdoglu M, Ege S, Yoruk I, Yaman G, Yildizhan R (2016) An analysis on the roles of angiogenesis-related factors including serum vitamin D, soluble endoglin (sEng), soluble fms-like tyrosine kinase 1 (sFlt1), and vascular endothelial growth factor (VEGF) in the diagnosis and severity of late-onset preeclampsia. J Matern Neonatal Med 30(13):1602–1607. https://doi.org/10.1080/14767058.2016.1219986

    Article  CAS  Google Scholar 

  66. Rǎdulescu C, Bacârea A, Huanu A, Gabor R, Dobreanu M (2016) Placental growth factor, soluble fms-like tyrosine kinase 1, soluble endoglin, IL-6, and IL-16 as biomarkers in preeclampsia. Mediat Inflamm 2016:3027363. https://doi.org/10.1155/2016/3027363

    Article  CAS  Google Scholar 

  67. Rezende VB, Barbosa F, Palei AC, Cavalli RC, Tanus-Santos JE, Sandrim VC (2014) Correlations among antiangiogenic factors and trace elements in hypertensive disorders of pregnancy. J Trace Elem Med Biol 29:130–135. https://doi.org/10.1016/j.jtemb.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  68. Perucci LO, Gomes KB, Freitas LG, Godoi LC, Ampoim PN, Pinheiro MB, Miranda AS, Texeira AL, Dusse LM, Sousa LP (2014) Soluble endoglin, transforming growth factor-beta 1 and soluble tumor necrosis factor alpha receptors in different clinical manifestations of preeclampsia. PLoS ONE 9(5):1–9. https://doi.org/10.1371/journal.pone.0097632

    Article  CAS  Google Scholar 

  69. Tobinaga CM, Torloni MR, Gueuvoghlanian-Silva BY, Pendeloski K, Akita PA, Sass N, Dahel S (2014) Angiogenic factors and uterine Doppler velocimetry in early- and late-onset preeclampsia. Acta Obstet Gynecol Scand 93(5):469–476. https://doi.org/10.1111/aogs.12366

    Article  CAS  PubMed  Google Scholar 

  70. Kleinrouweler CE, Wiegerinck MMJ, Ris-Stalpers C, Bossuyt PMM, van der Post JAM, von Dadelszen P, Mol BWJ, Pajkrt E, EBM CONNECT Collaboration (2012) Accuracy of circulating placental growth factor, vascular endothelial growth factor, soluble fms-like tyrosine kinase 1 and soluble endoglin in the prediction of pre-eclampsia: a systematic review and meta-analysis. BJOG 119(7):778–787. https://doi.org/10.1111/j.1471-0528.2012.03311.x

    Article  CAS  PubMed  Google Scholar 

  71. Allen RE, Rogozinska E, Cleverly K, Aquilina J, Thangaratinam S (2014) Abnormal blood biomarkers in early pregnancy are associated with preeclampsia: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 182:194–201. https://doi.org/10.1016/j.ejogrb.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  72. Margioula-Siarkou G, Margioula-Siarkou C, Petousis S, Margaritis K, Alexandratou M, Dinas K, Sotiriadis A, Mavromatidis G (2021) Soluble endoglin concentration in maternal blood as a diagnostic biomarker of preeclampsia: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 258:366–381. https://doi.org/10.1016/j.ejogrb.2021.01.039

    Article  CAS  PubMed  Google Scholar 

  73. Smirnov LV, Gryazeva IV, Vasileva MY, Krutetskaia IY et al (2018) New highly sensitive sandwich ELISA system for soluble endoglin quantification in different biological fluids. Scand J Clin Lab Invest 78(6):515–523. https://doi.org/10.1080/00365513.2018.1516892

    Article  CAS  PubMed  Google Scholar 

  74. Hirashima C, Ohkuchi A, Matsubara S, Suzuki H, Takahashi K, Usui R, Suzuki M (2008) Alteration of serum soluble endoglin levels after the onset of preeclampsia is more pronounced in women with early-onset. Hypertens Res 31(8):1541–1548. https://doi.org/10.1291/hypres.31.1541

    Article  CAS  PubMed  Google Scholar 

  75. Ollauri-Ibáñez C, López-Novoa JM, Pericacho M (2017) Endoglin-based biological therapy in the treatment of angiogenesis-dependent pathologies. Expert Opin Biol Ther 17(9):1053–1063. https://doi.org/10.1080/14712598.2017.1346607

    Article  CAS  PubMed  Google Scholar 

  76. Liu Y, Paauwe M, Nixon AB, Hawinkels LJAC (2021) Endoglin targeting: lessons learned and questions that remain. Int J Mol Sci 22(1):1–15. https://doi.org/10.3390/ijms22010147

    Article  CAS  Google Scholar 

  77. Dourado KMC, Baik J, Oliveira VKP, Beltrame M, Yamamoto A, Theuer CP, Figueiredo CAV, Verneris MR, Perlingeiro RCR (2017) Endoglin: a novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse models. Blood 129(18):2526–2536. https://doi.org/10.1182/blood-2017-01-763581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors have no one to acknowledge.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the work, the search of literature, the collection and analysis of data, the writing and revision of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Georgia Margioula-Siarkou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable. The present article does not involve intervention on a population of humans and/or animals directly, it is a review of literature that gathers information from published articles.

Consent to participate

Not applicable. The present article does not involve intervention on a population of humans and/or animals directly, it is a review of literature that gathers information from published articles.

Consent for publication

Not applicable. The present article does not involve intervention on a population of humans and/or animals directly, it is a review of literature that gathers information from published articles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margioula-Siarkou, G., Margioula-Siarkou, C., Petousis, S. et al. The role of endoglin and its soluble form in pathogenesis of preeclampsia. Mol Cell Biochem 477, 479–491 (2022). https://doi.org/10.1007/s11010-021-04294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04294-z

Keywords

Navigation