Skip to main content
Log in

Human umbilical cord-derived mesenchymal stem cells and their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral disc degeneration model

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Intervertebral disc (IVD) degeneration is an asymptomatic pathophysiological condition and a strong causative factor of low back pain. There is no cure available except spinal fusion and pain management. Stem cell-based regenerative medicine is being considered as an alternative approach to treat disc diseases. The current study aimed to differentiate human umbilical cord-mesenchymal stem cells (hUC-MSCs) into chondrocyte-like cells and to elucidate their feasibility and efficacy in the degenerated IVD rat model. Chondrogenic induction medium was used to differentiate hUC-MSCs into chondroprogenitors. Rat tail IVD model was established with three consecutive coccygeal discs. qPCR was performed to quantify the molecular markers of pain and inflammation. Histological staining was performed to evaluate the degree of regeneration. Induced chondroprogenitors showed the expression of chondrogenic genes, SOX9, TGF-β1, ACAN, BMP2, and GDF5. Immunocytochemical staining showed positive expression of chondrogenic proteins SOX9, TGF-β1, TGF-β2, and Collagen 2. In in vivo study, transplanted chondroprogenitors showed better survival, homing, and distribution in IVD as compared to normal MSCs. Expression of pain and inflammatory genes at day 5 of cell transplantation modulated immune response significantly. The transplanted labeled MSCs and induced chondroprogenitors differentiated into functional nucleus pulposus (NP) cells as evident from co-localization of red (DiI) and green fluorescence for SOX9, TGF-β1, and TGF-β2. Alcian blue and H & E staining showed standard histological features, indicating better preservation of the NP structure and cellularity than degenerated discs. hUC-MSCs-derived chondroprogenitors showed better regeneration potential as compared to normal MSCs. The pain and inflammation genes were downregulated in the treated group as compared to the degenerated IVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Perez-Cruet M, Beeravolu N, McKee C et al (2019) Potential of human nucleus pulposus-like cells derived from umbilical cord to treat degenerative disc disease. Clin Neurosurg 84(1):272–283. https://doi.org/10.1093/neuros/nyy012

    Article  Google Scholar 

  2. Dramer GD (2014) Clinical anatomy of the spine, spinal cord, and Ans. Elsevier, Amsterdam

    Google Scholar 

  3. Walter BA, Torre OM, Laudier D et al (2015) Form and function of the intervertebral disc in health and disease: a morphological and stain comparison study. J Anat 227(6):707–716. https://doi.org/10.1111/joa.12258

    Article  CAS  PubMed  Google Scholar 

  4. Colombier P, Clouet J, Hamel O et al (2014) The lumbar intervertebral disc: from embryonic development to degeneration. Jt Bone Spine 81(2):125–129. https://doi.org/10.1016/j.jbspin.2013.07.012

    Article  Google Scholar 

  5. Schizas C, Kulik G, Kosmopoulos V (2010) Disc degeneration: current surgical options. Eur Cells Mater 25:1–21. https://doi.org/10.22203/eCM.v020a25

    Article  Google Scholar 

  6. Xu B, Xu H, Wu Y et al (2015) Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds. PLoS ONE 10(4):e0124774. https://doi.org/10.1371/journal.pone.0124774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bydon M, De La Garza-Ramos R, Macki M et al (2014) Lumbar fusion versus nonoperative management for treatment of discogenic low back pain: a systematic review and meta-analysis of randomized controlled trials. J Spinal Disord Tech 27(5):297–304. https://doi.org/10.1097/BSD.0000000000000072

    Article  PubMed  Google Scholar 

  8. Campbell PG, Nunley PD, Cavanaugh D et al (2018) Short-term outcomes of lateral lumbar interbody fusion without decompression for the treatment of symptomatic degenerative spondylolisthesis at L4–5. Neurosurg Focus 44(1):E6. https://doi.org/10.3171/2017.10.FOCUS17566

    Article  PubMed  Google Scholar 

  9. Clouet J, Pot-Vaucel M, Grimandi G et al (2011) Characterization of the age-dependent intervertebral disc changes in rabbit by correlation between MRI, histology and gene expression. BMC Musculoskelet Disord 12:147. https://doi.org/10.1186/1471-2474-12-147

    Article  PubMed  PubMed Central  Google Scholar 

  10. Omlor GW, Lorenz S, Nerlich AG et al (2018) Disc cell therapy with bone-marrow-derived autologous mesenchymal stromal cells in a large porcine disc degeneration model. Eur Spine J 27(10):2639–2649. https://doi.org/10.1007/s00586-018-5728-4

    Article  CAS  PubMed  Google Scholar 

  11. Oehme D, Goldschlager T, Ghosh P et al (2015) Cell-based therapies used to treat lumbar degenerative disc disease: a systematic review of animal studies and human clinical trials. Stem Cells Int 2015:946031. https://doi.org/10.1155/2015/946031

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hussain I, Sloan SR, Wipplinger C et al (2019) Mesenchymal stem cell-seeded high-density collagen gel for annular repair: 6-week results from in vivo sheep models. Neurosurgery 85(2):E350–E359. https://doi.org/10.1093/neuros/nyy523

    Article  PubMed  Google Scholar 

  13. Wei JN, Cai F, Wang F et al (2016) Transplantation of CXCR4 overexpressed mesenchymal stem cells augments regeneration in degenerated intervertebral discs. DNA Cell Biol 35(5):241–248. https://doi.org/10.1089/dna.2015.3118

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Tao H, Gu T et al (2015) The effects of human Wharton’s jelly cell transplantation on the intervertebral disc in a canine disc degeneration model. Stem Cell Res Ther 6(1):154. https://doi.org/10.1186/s13287-015-0132-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Richardson SM, Kalamegam G, Pushparaj PN et al (2016) Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 99:69–80. https://doi.org/10.1016/j.ymeth.2015.09.015

    Article  CAS  PubMed  Google Scholar 

  16. Smith LJ, Silverman L, Sakai D et al (2018) Advancing cell therapies for intervertebral disc regeneration from the lab to the clinic: recommendations of the ORS spine section. JOR Spine 1(4):e1036. https://doi.org/10.1002/jsp2.1036

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marfia G, Campanella R, Navone SE et al (2014) Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycan-deficient murine model of chronic disc degeneration. Arthritis Res Ther 16(5):457. https://doi.org/10.1186/s13075-014-0457-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leckie SK, Sowa GA, Bechara BP et al (2013) Injection of human umbilical tissue-derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo. Spine J 13(3):263–272. https://doi.org/10.1016/j.spinee.2012.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jeong JH, Lee JH, Jin ES et al (2010) Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir (Wien) 152(10):1771–1777. https://doi.org/10.1007/s00701-010-0698-2

    Article  Google Scholar 

  20. Ghosh P, Moore R, Vernon-Roberts B et al (2012) Immunoselected STRO-3+ mesenchymal precursor cells and restoration of the extracellular matrix of degenerate intervertebral discs: laboratory investigation. J Neurosurg Spine 16(5):479–488. https://doi.org/10.3171/2012.1.SPINE11852

    Article  PubMed  Google Scholar 

  21. Chun HJ, Kim YS, Kim BK et al (2012) Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs. World Neurosurg 78(3–4):364–371. https://doi.org/10.1016/j.wneu.2011.12.084

    Article  PubMed  Google Scholar 

  22. Beeravolu N, Khan I, McKee C et al (2016) Isolation and comparative analysis of potential stem/progenitor cells from different regions of human umbilical cord. Stem Cell Res 16(3):696–711. https://doi.org/10.1016/j.scr.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  23. Ahn J, Park EM, Kim BJ et al (2015) Transplantation of human Wharton’s jelly-derived mesenchymal stem cells highly expressing TGFβ receptors in a rabbit model of disc degeneration. Stem Cell Res Ther 6:190. https://doi.org/10.1186/s13287-015-0183-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dowdell J, Erwin M, Choma T et al (2017) Intervertebral disk degeneration and repair. Clin Neurosurg 80(3S):S46–S54. https://doi.org/10.1093/neuros/nyw078

    Article  Google Scholar 

  25. Lee JTY, Cheung KMC, Leung VYL (2015) Extraction of RNA from tough tissues with high proteoglycan content by cryosection, second phase separation and high salt precipitation. J Biol Methods 2(2):e20. https://doi.org/10.14440/jbm.2015.40

    Article  Google Scholar 

  26. Vos T, Flaxman AD, Naghavi M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2163–2196. https://doi.org/10.1016/S0140-6736(12)61729-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Annona G, Holland ND, D’Aniello S (2015) Evolution of the notochord. EvoDevo 6:30. https://doi.org/10.1186/s13227-015-0025-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krampera M, Galipeau J, Shi Y et al (2013) Immunological characterization of multipotent mesenchymal stromal cells—the International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 15(9):1054–1061. https://doi.org/10.1016/j.jcyt.2013.02.010

    Article  PubMed  Google Scholar 

  29. Nekanti U, Rao VB, Bahirvani AG et al (2010) Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev 19(1):117–130. https://doi.org/10.1089/scd.2009.0177

    Article  CAS  PubMed  Google Scholar 

  30. Chang YH, Wu KC, Liu HW et al (2018) Human umbilical cord-derived mesenchymal stem cells reduce monosodium iodoacetate-induced apoptosis in cartilage. Tzu Chi Med J 30(2):71–80. https://doi.org/10.4103/tcmj.tcmj_23_18

    Article  PubMed Central  Google Scholar 

  31. Rashid S, Qazi REM, Malick TS et al (2021) Effect of valproic acid on the hepatic differentiation of mesenchymal stem cells in 2D and 3D microenvironments. Mol Cell Biochem 476(2):909–919. https://doi.org/10.1007/s11010-020-03955-9

    Article  CAS  PubMed  Google Scholar 

  32. Marino L, Castaldi MA, Rosamilio R et al (2019) Mesenchymal stem cells from the Wharton’s jelly of the human umbilical cord: biological properties and therapeutic potential. Int J Stem Cells 12(2):218–226. https://doi.org/10.15283/ijsc18034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ali SR, Ahmad W, Naeem N et al (2020) Small molecule 2′-deoxycytidine differentiates human umbilical cord-derived MSCs into cardiac progenitors in vitro and their in vivo xeno-transplantation improves cardiac function. Mol Cell Biochem 470(1–2):99–113. https://doi.org/10.1007/s11010-020-03750-6

    Article  CAS  PubMed  Google Scholar 

  34. Pang X, Yang H, Peng B (2014) Human umbilical cord mesenchymal stem cell transplantation for the treatment of chronic discogenic low back pain. Pain Physician 17(4):E525–E530

    Article  Google Scholar 

  35. Sakai D, Andersson GBJ (2015) Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat Rev Rheumatol 11(4):243–256. https://doi.org/10.1038/nrrheum.2015.13

    Article  PubMed  Google Scholar 

  36. De Mara CS, Duarte ASS, Sartori A et al (2010) Regulation of chondrogenesis by transforming growth factor-β3 and insulin-like growth factor-1 from human mesenchymal umbilical cord blood cells. J Rheumatol 37(7):1519–1526. https://doi.org/10.3899/jrheum.091169

    Article  CAS  PubMed  Google Scholar 

  37. Lee PT, Li WJ (2017) Chondrogenesis of embryonic stem cell-derived mesenchymal stem cells induced by TGFβ1 and BMP7 through increased TGFβ receptor expression and endogenous TGFβ1 production. J Cell Biochem 118(1):172–181. https://doi.org/10.1002/jcb.25623

    Article  CAS  PubMed  Google Scholar 

  38. Zhao C, Jiang W, Zhou N et al (2017) Sox9 augments BMP2-induced chondrogenic differentiation by downregulating Smad7 in mesenchymal stem cells (MSCs). Genes Dis 4(4):229–239. https://doi.org/10.1016/j.gendis.2017.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kania K, Colella F, Riemen AHK et al (2020) Regulation of Gdf5 expression in joint remodelling, repair and osteoarthritis. Sci Rep 10(1):157. https://doi.org/10.1038/s41598-019-57011-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barczewska M, Jezierska-Wozniak K, Habich A et al (2018) Evaluation of regenerative processes in the pig model of intervertebral disc degeneration after transplantation of bone marrow-derived mesenchymal stem cells. Folia Neuropathol 56(2):124–132. https://doi.org/10.5114/fn.2018.76616

    Article  PubMed  Google Scholar 

  41. Zayed N, Afif H, Chabane N et al (2008) Inhibition of interleukin-1β-induced matrix metalloproteinases 1 and 13 production in human osteoarthritic chondrocytes by prostaglandin D2. Arthritis Rheum 58(11):3530–3540. https://doi.org/10.1002/art.23958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Risbud MV, Shapiro IM (2014) Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 10(1):44–56. https://doi.org/10.1038/nrrheum.2013.160

    Article  CAS  PubMed  Google Scholar 

  43. Rajan NE, Bloom O, Maidhof R et al (2013) Toll-like receptor 4 (TLR4) expression and stimulation in a model of intervertebral disc inflammation and degeneration. Spine (Phila Pa 1976) 38(16):1343–1351. https://doi.org/10.1097/BRS.0b013e31826b71f4

    Article  Google Scholar 

  44. Xu HG, Song JX, Cheng JF et al (2013) JNK phosphorylation promotes degeneration of cervical endplate chondrocytes through down-regulation of the expression of ANK in humans. Chin Med J (Engl) 126(11):2067–2073. https://doi.org/10.3760/cma.j.issn.0366-6999.20122598

    Article  CAS  Google Scholar 

  45. Yokoyama K, Hiyama A, Arai F et al (2013) C-Fos regulation by the MAPK and PKC pathways in intervertebral disc cells. PLoS ONE 8(9):e73210. https://doi.org/10.1371/journal.pone.0073210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li JK, Nie L, Zhao YP et al (2016) IL-17 mediates inflammatory reactions via p38/c-Fos and JNK/c-Jun activation in an AP-1-dependent manner in human nucleus pulposus cells. J Transl Med 14:77. https://doi.org/10.1186/s12967-016-0833-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ikeda K, Takeshita S (2016) The role of osteoclast differentiation and function in skeletal homeostasis. J Biochem 159(1):1–8. https://doi.org/10.1093/jb/mvv112

    Article  CAS  PubMed  Google Scholar 

  48. Takegami N, Akeda K, Yamada J et al (2017) RANK/RANKL/OPG system in the intervertebral disc. Arthritis Res Ther 19(1):121. https://doi.org/10.1186/s13075-017-1332-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wuertz K, Haglund L (2013) Inflammatory mediators in intervertebral disk degeneration and discogenic pain. Glob Spine J 3(3):175–184. https://doi.org/10.1055/s-0033-1347299

    Article  Google Scholar 

  50. Liang QQ, Li XF, Zhou Q et al (2011) The expression of osteoprotegerin is required for maintaining the intervertebral disc endplate of aged mice. Bone 48(6):1362–1369. https://doi.org/10.1016/j.bone.2011.03.773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rutges JPHJ, Duit RA, Kummer JA et al (2013) A validated new histological classification for intervertebral disc degeneration. Osteoarthr Cartil 21(12):2039–2047. https://doi.org/10.1016/j.joca.2013.10.001

    Article  CAS  Google Scholar 

  52. Molinos M, Almeida CR, Caldeira J et al (2015) Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface 12(104):20141191. https://doi.org/10.1098/rsif.2014.1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shamji MF, Setton LA, Jarvis W et al (2010) Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum 62(7):1974–1982. https://doi.org/10.1002/art.27444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hughes SPF, Freemont AJ, Hukins DWL et al (2012) The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain. J Bone Jt Surg Br Vol 94(10):1298–1304. https://doi.org/10.1302/0301-620X.94B10.28986

    Article  CAS  Google Scholar 

Download references

Funding

This project was financially supported by Higher Education Commission Pakistan Grant No. 7083.

Author information

Authors and Affiliations

Authors

Contributions

SE and SK performed the experiments and wrote the manuscript, AS evaluated and analyzed the data and helped in the preparation of the manuscript, IB analyzed the data and helped in the preparation of the manuscript, IK designed the experiments, analyzed the data, secure the funding, and finalized the manuscript.

Corresponding author

Correspondence to Irfan Khan.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekram, S., Khalid, S., Bashir, I. et al. Human umbilical cord-derived mesenchymal stem cells and their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral disc degeneration model. Mol Cell Biochem 476, 3191–3205 (2021). https://doi.org/10.1007/s11010-021-04155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04155-9

Keywords

Navigation