Inhibition of tumor necrosis factor-α enhanced the antifibrotic effect of empagliflozin in an animal model with renal insulin resistance

  • Hoda E. MohamedEmail author
  • Mervat E. Asker
  • Mohammed M. Keshawy
  • Rehab A. Hasan
  • Yasmin K. Mahmoud


Insulin resistance (IR) has emerged as one of the main risk factors for renal fibrosis (RF) that represents a common stage in almost all chronic kidney disease. The present study aims to investigate the inhibitory effect of empagliflozin (EMPA “a sodium-glucose co-transporter 2 inhibitor”) and infliximab [IFX “a tumor necrosis factor-α (TNF-α) antibody”] on RF in rats with induced IR. IR was induced by adding 10% fructose in drinking water for 20 weeks. Thereafter, fructose-induced IR rats were concurrently treated with EMPA (30 mg/kg), IFX (1 dose 5 mg/kg), or EMPA + IFX for 4 weeks, in addition to IR control group (received 10% fructose in water) and normal control (NC) group. Rats with IR displayed hyperglycemia, deterioration in kidney functions, glomerulosclerosis, and collagen fiber deposition in renal tissues as compared to NC. This was associated with downregulation of the renal sirtuin 1 (Sirt 1) expression along with higher renal tissue TNF-α and transforming growth factor-β1 (TGF-β1) levels. Both EMPA and IFX significantly modulated the aforementioned fibrotic cytokines, upregulated the renal Sirt 1 expression, and attenuated RF compared to IR control group. Of note, IFX effect was superior to that of EMPA. However, the combination of EMPA and IFX alleviated RF to a greater extent surpassing the monotherapy. This may be attributed to the further upregulation of renal Sirt 1 in addition to the downregulation of fibrotic cytokines. These findings suggest that the combination of EMPA and IFX offers additional benefits and may represent a promising therapeutic option for RF.


Empagliflozin Infliximab Insulin resistance Renal fibrosis Sirt 1 


Author contributions

HM: conception and design of the research, revision of the manuscript, and gave final approval. MA: conception and design of the research, revision of the manuscript, and gave final approval. MK: data analysis, interpretation of results, and manuscript editing. RH: carried out the histological examination. YM: carried out the experiments, data analysis, interpretation of results, and writing the drafted manuscript. All authors revised and approved the final manuscript for submission.


This research did not receive any specific grant for the research, authorship, and/or publication of this article.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Nistala R, Whaley-Connell A (2013) Resistance to insulin and kidney disease in the cardiorenal metabolic syndrome; role for angiotensin II. Mol Cell Endocrinol 378:53–58PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Artunc F, Schleicher E, Weigert C, Fritsche A, Stefan N, Haering H-U (2016) The impact of insulin resistance on the kidney and vasculature. Nat Rev Nephrol 12:721PubMedCrossRefGoogle Scholar
  3. 3.
    De Cosmo S, Menzaghi C, Prudente S, Trischitta V (2012) Role of insulin resistance in kidney dysfunction: insights into the mechanism and epidemiological evidence. Nephrol Dial Transplant 28:29–36PubMedCrossRefGoogle Scholar
  4. 4.
    Declèves A-E, Sharma K (2015) Obesity and kidney disease: differential effects of obesity on adipose tissue and kidney inflammation and fibrosis. Curr Opin Nephrol Hypertens 24:28PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Rev Endocrinol 4:444CrossRefGoogle Scholar
  6. 6.
    Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, Sautin YY, Johnson RJ, Nakagawa T (2007) Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Ren Physiol 293:F1256–F1261CrossRefGoogle Scholar
  7. 7.
    Palanisamy N, Kannappan S, Anuradha CV (2011) Genistein modulates NF-κB-associated renal inflammation, fibrosis and podocyte abnormalities in fructose-fed rats. Eur J Pharmacol 667:355–364PubMedCrossRefGoogle Scholar
  8. 8.
    Oudot C, Lajoix AD, Jover B, Rugale C (2013) Dietary sodium restriction prevents kidney damage in high fructose-fed rats. Kidney Int 83:674–683PubMedCrossRefGoogle Scholar
  9. 9.
    Qiao Y, Xu L, Tao X, Yin L, Qi Y, Xu Y, Han X, Tang Z, Ma X, Liu K (2018) Protective effects of dioscin against fructose-induced renal damage via adjusting Sirt3-mediated oxidative stress, fibrosis, lipid metabolism and inflammation. Toxicol Lett 284:37–45PubMedCrossRefGoogle Scholar
  10. 10.
    Yu J, Mao S, Zhang Y, Gong W, Jia Z, Huang S, Zhang A (2016) MnTBAP therapy attenuates renal fibrosis in mice with 5/6 nephrectomy. Oxidative Med Cell Longev. CrossRefGoogle Scholar
  11. 11.
    Meng X-M, Tang PM-K, Li J, Lan HY (2015) TGF-β/Smad signaling in renal fibrosis. Front Physiol 6:82PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lan H (2011) Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci 7:1056PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Huang XZ, Wen D, Zhang M, Xie Q, Ma L, Guan Y, Ren Y, Chen J, Hao CM (2014) Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway. J Cell Biochem 115:996–1005PubMedCrossRefGoogle Scholar
  14. 14.
    Liu Y (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69:213–217PubMedCrossRefGoogle Scholar
  15. 15.
    Lv W, Booz GW, Wang Y, Fan F, Roman RJ (2018) Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol 820:65–76PubMedCrossRefGoogle Scholar
  16. 16.
    Vielhauer V, Mayadas TN (2007) Functions of TNF and its receptors in renal disease: distinct roles in inflammatory tissue injury and immune regulation. Semin Nephrol 27:286–308PubMedCrossRefGoogle Scholar
  17. 17.
    Lee S-Y, Kim SI, Choi ME (2015) Therapeutic targets for treating fibrotic kidney diseases. Transl Res 165:512–530PubMedCrossRefGoogle Scholar
  18. 18.
    Idasiak-Piechocka I, Oko A, Pawliczak E, Kaczmarek E, Czekalski S (2010) Urinary excretion of soluble tumour necrosis factor receptor 1 as a marker of increased risk of progressive kidney function deterioration in patients with primary chronic glomerulonephritis. Nephrol Dial Transplant 25:3948–3956PubMedCrossRefGoogle Scholar
  19. 19.
    Braun J, Deodhar A, Dijkmans B, Geusens P, Sieper J, Williamson P, Xu W, Visvanathan S, Baker D, Goldstein N (2008) Efficacy and safety of infliximab in patients with ankylosing spondylitis over a two-year period. Arthritis Care Res Off J Am Coll Rheumatol 59:1270–1278CrossRefGoogle Scholar
  20. 20.
    Altintas N, Erboga M, Aktas C, Bilir B, Aydin M, Sengul A, Ates Z, Topcu B, Gurel A (2016) Protective effect of infliximab, a tumor necrosis factor-alfa inhibitor, on bleomycin-induced lung fibrosis in rats. Inflammation 39:65–78PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang H, Sui J-N, Gao L, Guo J (2018) Subcutaneous administration of infliximab-attenuated silica-induced lung fibrosis. Int J Occup Med Environ Health 31:503–515PubMedGoogle Scholar
  22. 22.
    Meng X-M, Zhang Y, Huang X-R, Ren G-L, Li J, Lan HY (2015) Treatment of renal fibrosis by rebalancing TGF-β/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget 6:36984PubMedPubMedCentralGoogle Scholar
  23. 23.
    Satirapoj B (2017) Sodium-glucose cotransporter 2 inhibitors with renoprotective effects. Kidney Dis 3:24–32CrossRefGoogle Scholar
  24. 24.
    Kawanami D, Matoba K, Takeda Y, Nagai Y, Akamine T, Yokota T, Sango K, Utsunomiya K (2017) SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int J Mol Sci 18:1083PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Abbas NA, Salem AE, Awad MM (2018) Empagliflozin, SGLT 2 inhibitor, attenuates renal fibrosis in rats exposed to unilateral ureteric obstruction: potential role of Klotho expression. Naunyn-Schmiedeberg’s Arch Pharmacol 391:1347–1360CrossRefGoogle Scholar
  26. 26.
    Jigheh ZA, Haghjo AG, Argani H, Roshangar L, Rashtchizadeh N, Sanajou D, Ahmad SNS, Rashedi J, Dastmalchi S, Abbasi MM (2019) Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis. Iran J Basic Med Sci 22:384Google Scholar
  27. 27.
    Wakino S, Itoh H (2018) High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection. Sci Rep 8:6791PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Xie J, Zhang X, Zhang L (2013) Negative regulation of inflammation by SIRT1. Pharmacol Res 67:60–67PubMedCrossRefGoogle Scholar
  29. 29.
    Sanghavi M, Vajir M, Kumar S, Tikoo K (2015) NFAT inhibitor tributylhexadecylphosphoniumbromide, ameliorates high fructose induced insulin resistance and nephropathy. Chemicobiol Interact 240:268–277CrossRefGoogle Scholar
  30. 30.
    Emoto M, Nishizawa Y, Maekawa K, Hiura Y, Kanda H, Kawagishi T, Shoji T, Okuno Y, Morii H (1999) Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas. Diabetes Care 22:818–822PubMedCrossRefGoogle Scholar
  31. 31.
    Vickers SP, Cheetham SC, Headland KR, Dickinson K, Grempler R, Mayoux E, Mark M, Klein T (2014) Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet. Diabetes Metab Syndr Obesity Targets Ther 7:265CrossRefGoogle Scholar
  32. 32.
    Tasdemir C, Tasdemir S, Vardi N, Ates B, Parlakpinar H, Kati B, Karaaslan MG, Acet A (2012) Protective effect of infliximab on ischemia/reperfusion-induced damage in rat kidney. Ren Fail 34:1144–1149PubMedCrossRefGoogle Scholar
  33. 33.
    Barbuio R, Milanski M, Bertolo MB, Saad MJ, Velloso LA (2007) Infliximab reverses steatosis and improves insulin signal transduction in liver of rats fed a high-fat diet. J Endocrinol 194:539–550PubMedCrossRefGoogle Scholar
  34. 34.
    Yin Q, Ma Y, Hong Y, Hou X, Chen J, Shen C, Sun M, Shang Y, Dong S, Zeng Z (2014) Lycopene attenuates insulin signaling deficits, oxidative stress, neuroinflammation, and cognitive impairment in fructose-drinking insulin resistant rats. Neuropharmacology 86:389–396PubMedCrossRefGoogle Scholar
  35. 35.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101CrossRefGoogle Scholar
  36. 36.
    Bancroft JD, Stevens A (1990) Theory and practice of histological techniques. Churchill Livingstone, EdinburghGoogle Scholar
  37. 37.
    Wang S, Yang S, Zhao X, Chen F, Shi J (2017) Expression of the Wnt/β-catenin signal pathway in patients with acute renal injury. Eur Rev Med Pharmacol Sci 21:4661–4667PubMedPubMedCentralGoogle Scholar
  38. 38.
    Souza AC, Tsuji T, Baranova IN, Bocharov AV, Wilkins KJ, Street JM, Alvarez-Prats A, Hu X, Eggerman T, Yuen PS (2015) TLR 4 mutant mice are protected from renal fibrosis and chronic kidney disease progression. Physiol Rep 3:e12558PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Drury RA, Wallington EA (1980) Histological techniques, 5th edn. Oxford University Press, Oxford, pp 27–32Google Scholar
  40. 40.
    Mohamad HE, Askar ME, Hafez MM (2011) Management of cardiac fibrosis in diabetic rats; the role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs). Diabetol Metab Syndr 3(4):1–12Google Scholar
  41. 41.
    Singh B, Saxena A (2010) Surrogate markers of insulin resistance: a review. World J Diabetes 1:36PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Groop P-H, Forsblom C, Thomas MC (2005) Mechanisms of disease: pathway-selective insulin resistance and microvascular complications of diabetes. Nat Rev Endocrinol 1:100CrossRefGoogle Scholar
  43. 43.
    Ferrannini E, Nannipieri M (2000) Effects of insulin on the kidney and the cardiovascular system. The kidney and hypertension in diabetes mellitus. Springer, New York, pp 141–153CrossRefGoogle Scholar
  44. 44.
    Liao M-T, Sung C-C, Hung K-C, Wu C-C, Lo L, Lu K-C (2012) Insulin resistance in patients with chronic kidney disease. Biomed Res Int. Google Scholar
  45. 45.
    Lazar MA (2006) The humoral side of insulin resistance. Nat Medi 12:43CrossRefGoogle Scholar
  46. 46.
    Padiya R, Chowdhury D, Borkar R, Srinivas R, Bhadra MP, Banerjee SK (2014) Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS ONE 9:e94228PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kelany ME, Hakami TM, Omar AH (2016) Curcumin improves the metabolic syndrome in high-fructose-diet-fed rats: role of TNF-α, NF-κB, and oxidative stress. Can J Physiol Pharmacol 95:140–150PubMedCrossRefGoogle Scholar
  48. 48.
    Tan AL, Forbes JM, Cooper ME (2007) AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol 27:130–143PubMedCrossRefGoogle Scholar
  49. 49.
    Sudamrao Garud M, Anant Kulkarni Y (2014) Hyperglycemia to nephropathy via transforming growth factor beta. Curr Diabetes Rev 10:182–189PubMedCrossRefGoogle Scholar
  50. 50.
    Zabolotny JM, Kim Y-B (2007) Silencing insulin resistance through SIRT1. Cell Metab 6:247–249PubMedCrossRefGoogle Scholar
  51. 51.
    de Kreutzenberg SV, Ceolotto G, Papparella I, Bortoluzzi A, Semplicini A, Dalla Man C, Cobelli C, Fadini GP, Avogaro A (2010) Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes 59:1006–1015PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Gillum MP, Kotas ME, Erion DM, Kursawe R, Chatterjee P, Nead KT, Muise ES, Hsiao JJ, Frederick DW, Yonemitsu S (2011) SirT1 regulates adipose tissue inflammation. Diabetes 60:3235–3245PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Fröjdö S, Durand C, Molin L, Carey AL, El-Osta A, Kingwell BA, Febbraio MA, Solari F, Vidal H, Pirola L (2011) Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 335:166–176PubMedCrossRefGoogle Scholar
  54. 54.
    Spoto B, Pisano A, Zoccali C (2016) Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Ren Physiol 311:F1087–F1108CrossRefGoogle Scholar
  55. 55.
    Hirabara SM, Gorjao R, Vinolo MA, Rodrigues AC, Nachbar RT, Curi R (2012) Molecular targets related to inflammation and insulin resistance and potential interventions. Biomed Res Int. CrossRefGoogle Scholar
  56. 56.
    Song Z, Wang H, Zhu L, Han M, Gao Y, Du Y, Wen Y (2015) Curcumin improves high glucose-induced INS-1 cell insulin resistance via activation of insulin signaling. Food Funct 6:461–469PubMedCrossRefGoogle Scholar
  57. 57.
    Rahman MM, McFadden G (2011) Modulation of NF-κB signalling by microbial pathogens. Nat Rev Microbiol 9:291PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A (2013) Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 25:1939–1948PubMedCrossRefGoogle Scholar
  59. 59.
    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Du G, Song Y, Zhang T, Ma L, Bian N, Chen X, Feng J, Chang Q, Li Z (2014) Simvastatin attenuates TNF-α-induced apoptosis in endothelial progenitor cells via the upregulation of SIRT1. Int J Mol Med 34:177–182PubMedCrossRefGoogle Scholar
  61. 61.
    Caruso R, Marafini I, Franzè E, Stolfi C, Zorzi F, Monteleone I, Caprioli F, Colantoni A, Sarra M, Sedda S (2014) Defective expression of SIRT1 contributes to sustain inflammatory pathways in the gut. Mucosal Immunol 7:1467PubMedCrossRefGoogle Scholar
  62. 62.
    Simic P, Williams EO, Bell EL, Gong JJ, Bonkowski M, Guarente L (2013) SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep 3:1175–1186PubMedCrossRefGoogle Scholar
  63. 63.
    García-Vizcaíno EM, Liarte S, Alonso-Romero JL, Nicolás FJ (2017) Sirt1 interaction with active Smad2 modulates transforming growth factor-β regulated transcription. Cell Commun Signal 15:50PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Roberts AB, Tian F, Byfield SD, Stuelten C, Ooshima A, Saika S, Flanders KC (2006) Smad3 is key to TGF-β-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 17:19–27PubMedCrossRefGoogle Scholar
  65. 65.
    Loboda A, Sobczak M, Jozkowicz A, Dulak J (2016) TGF-β1/Smads and miR-21 in renal fibrosis and inflammation. Mediat Inflamm. CrossRefGoogle Scholar
  66. 66.
    Nogueira A, Pires MJ, Oliveira PA (2017) Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. Vivo 31:1–22CrossRefGoogle Scholar
  67. 67.
    Yang M, Liu C, Jiang J, Zuo G, Lin X, Yamahara J, Wang J, Li Y (2014) Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats. BMC Complement Altern Med 14:174PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Sutariya B, Saraf M (2017) Betanin, isolated from fruits of Opuntia elatior Mill attenuates renal fibrosis in diabetic rats through regulating oxidative stress and TGF-β pathway. J Ethnopharmacol 198:432–443PubMedCrossRefGoogle Scholar
  69. 69.
    Byrne NJ, Parajuli N, Levasseur JL, Boisvenue J, Beker DL, Masson G, Fedak PW, Verma S, Dyck JR (2017) Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Transl Sci 2:347–354PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Singh HP, Kaur I, Sharma G (2015) Sodium glucose co-transporter-2 (SGLT2) inhibitors as a new class of anti-diabetic drugs: pharmacokinetics, efficacy and clinical significance. Int J Pharm Sci Rev Res 33(1):40–47Google Scholar
  71. 71.
    Di Paola R, Genovese T, Impellizzeri D, Ahmad A, Cuzzocrea S, Esposito E (2013) The renal injury and inflammation caused by ischemia–reperfusion are reduced by genetic inhibition of TNF-αR1: a comparison with infliximab treatment. Eur J Pharmacol 700:134–146PubMedCrossRefGoogle Scholar
  72. 72.
    Ma X, Xu S (2013) TNF inhibitor therapy for rheumatoid arthritis. Biomed Rep 1:177–184PubMedCrossRefGoogle Scholar
  73. 73.
    Méndez-García LA, Trejo-Millán F, Martínez-Reyes CP, Manjarrez-Reyna AN, Esquivel-Velázquez M, Melendez-Mier G, Islas-Andrade S, Rojas-Bernabé A, Kzhyshkowska J, Escobedo G (2018) Infliximab ameliorates tumor necrosis factor-alpha-induced insulin resistance by attenuating PTP 1B activation in 3T3L1 adipocytes in vitro. Scand J Immunol 88:e12716PubMedCrossRefGoogle Scholar
  74. 74.
    Araujo EP, De Souza CT, Ueno M, Cintra DE, Bertolo MB, Carvalheira JB, Saad MJ, Velloso LA (2007) Infliximab restores glucose homeostasis in an animal model of diet-induced obesity and diabetes. Endocrinology 148:5991–5997PubMedCrossRefGoogle Scholar
  75. 75.
    Burska AN, Sakthiswary R, Sattar N (2015) Effects of tumour necrosis factor antagonists on insulin sensitivity/resistance in rheumatoid arthritis: a systematic review and meta-analysis. PLoS ONE 10:e0128889PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Miranda-Filloy J, Llorca J, Carnero-López B, González-Juanatey C, Blanco R, González-Gay M (2012) TNF-alpha antagonist therapy improves insulin sensitivity in non-diabetic ankylosing spondylitis patients. Clin Exp Rheumatol 30:850–855PubMedGoogle Scholar
  77. 77.
    Maldonado-Cervantes M, Galicia O, Moreno-Jaime B, Zapata-Morales J, Montoya-Contreras A, Bautista-Perez R, Martinez-Morales F (2012) Autocrine modulation of glucose transporter SGLT2 by IL-6 and TNF-α in LLC-PK 1 cells. J Physiol Biochem 68:411–420PubMedCrossRefGoogle Scholar
  78. 78.
    Ojima A, Matsui T, Nishino Y, Nakamura N, Yamagishi S (2015) Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Horm Metab Res 47:686–692PubMedCrossRefGoogle Scholar
  79. 79.
    Gallo LA, Ward MS, Fotheringham AK, Zhuang A, Borg DJ, Flemming NB, Harvie BM, Kinneally TL, Yeh S-M, McCarthy DA (2016) Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci Rep 6:26428PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Khasnis AA, Calabrese LH (2010) Tumor necrosis factor inhibitors and lung disease: a paradox of efficacy and risk. Semin Arthritis Rheum 40:147–163PubMedCrossRefGoogle Scholar
  81. 81.
    Komala MG, Gross S, Mudaliar H, Huang C, Pegg K, Mather A, Shen S, Pollock CA, Panchapakesan U (2014) Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS ONE 9:e108994CrossRefGoogle Scholar
  82. 82.
    Panchapakesan U, Pegg K, Gross S, Komala MG, Mudaliar H, Forbes J, Pollock C, Mather A (2013) Effects of SGLT2 inhibition in human kidney proximal tubular cells—renoprotection in diabetic nephropathy? PLoS ONE 8:e54442PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Oikonomou N, Harokopos V, Zalevsky J, Valavanis C, Kotanidou A, Szymkowski DE, Kollias G, Aidinis V (2006) Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. PLoS ONE 1:e108PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lis K, Kuzawińska O, Bałkowiec-Iskra E (2014) Tumor necrosis factor inhibitors—state of knowledge. Arch Med Sci 10:1175PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Liang F, Kume S, Koya D (2009) SIRT1 and insulin resistance. Nat Rev Endocrinol 5:367PubMedCrossRefGoogle Scholar
  86. 86.
    Umino H, Hasegawa K, Minakuchi H, Muraoka H, Kawaguchi T, Kanda T, Tokuyama H, Wakino S, Itoh H (2018) High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection. Sci Rep 8:6791PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of PharmacyZagazig UniversityZagazigEgypt
  2. 2.Nephrology Division, Department of Internal Medicine, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
  3. 3.Department of Histology, Faculty of Medicine for GirlsAl-Azhar UniversityCairoEgypt

Personalised recommendations