Advertisement

Molecular and Cellular Biochemistry

, Volume 465, Issue 1–2, pp 125–139 | Cite as

The impact of PSRC1 overexpression on gene and transcript expression profiling in the livers of ApoE−/− mice fed a high-fat diet

  • Mengqiu Wei
  • Peng Li
  • Kai GuoEmail author
Article

Abstract

Our previous studies have confirmed that proline/serine-rich coiled-coil 1 (PSRC1) overexpression can regulate blood lipid levels and inhibit atherosclerosis (AS) development. In the current study, the gene and transcript expression profiles in the livers of ApoE−/− mice overexpressing PSRC1 were investigated. HiSeq X Ten RNA sequencing (RNA-seq) analysis was used to examine the differentially expressed genes (DEGs) and differentially expressed transcripts in the livers of PSRC1-overexpressing ApoE−/− and control mice. Then, Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on these DEGs and on long noncoding RNA (lncRNA) predicted target genes. A total of 1892 significant DEGs were identified: 1431 were upregulated (e.g., Cyp2a4, Obp2a, and Sertad4), and 461 were downregulated (e.g., Moxd1, Egr1, and Elovl3). In addition, 8184 significant differentially expressed transcripts were identified, 4908 of which were upregulated and 3276 of which were downregulated. Furthermore, 1106 significant differentially expressed lncRNAs were detected, 713 of which were upregulated and 393 of which were downregulated. Quantitative reverse transcription PCR (qRT-PCR) verified changes in 10 randomly selected DEGs. GO analyses showed that the DEGs and predicted lncRNA target genes were mostly enriched for actin binding and lipid metabolism. KEGG biological pathway analyses showed that the DEGs in the livers of PSRC1-overexpressing ApoE−/− mice were enriched in the mitogen-activated protein kinase (MAPK) pathway. These findings reveal that PSRC1 may affect liver actin polymerization and cholesterol metabolism-related genes or pathways. These mRNAs and lncRNAs may represent new biomarkers and targets for the diagnosis and therapy of lipid metabolism disturbance and AS.

Keywords

PSRC1 Atherosclerosis Lipid metabolism disorders High-throughput sequencing DEGs lncRNA Bioinformatics analyses 

Notes

Acknowledgements

Not applicable.

Author contributions

MW and KG planned and designed the experiments, analyzed the data, and wrote the manuscript. MW performed the experiments and data collection. PL is responsible for re-analyzing data and revision.

Funding

This work was supported by the Zhongshan Major Science and Technology Development Project (Zhong Ke Fa No. 2016B1002).

Compliance with ethical standards

Conflict of interest

The authors have declared that no conflict of interest exists.

Supplementary material

11010_2019_3673_MOESM1_ESM.xlsx (5.6 mb)
Supplementary material 1 (XLSX 5764 kb)
11010_2019_3673_MOESM2_ESM.xlsx (426 kb)
Supplementary material 2 (XLSX 425 kb)
11010_2019_3673_MOESM3_ESM.xlsx (534 kb)
Supplementary material 3 (XLSX 533 kb)
11010_2019_3673_MOESM4_ESM.xlsx (69 kb)
Supplementary material 4 (XLSX 69 kb)
11010_2019_3673_MOESM5_ESM.xlsx (114 kb)
Supplementary material 5 (XLSX 113 kb)
11010_2019_3673_MOESM6_ESM.xlsx (342 kb)
Supplementary material 6 (XLSX 342 kb)
11010_2019_3673_MOESM7_ESM.xlsx (47 kb)
Supplementary material 7 (XLSX 47 kb)
11010_2019_3673_MOESM8_ESM.xlsx (71 kb)
Supplementary material 8 (XLSX 70 kb)
11010_2019_3673_MOESM9_ESM.xlsx (42 kb)
Supplementary material 9 (XLSX 42 kb)
11010_2019_3673_MOESM10_ESM.xlsx (31 kb)
Supplementary material 10 (XLSX 31 kb)
11010_2019_3673_MOESM11_ESM.xlsx (9 kb)
Supplementary material 11 (XLSX 9 kb)
11010_2019_3673_MOESM12_ESM.xlsx (10 kb)
Supplementary material 12 (XLSX 10 kb)
11010_2019_3673_MOESM13_ESM.xlsx (16.9 mb)
Supplementary material 13 (XLSX 17292 kb)
11010_2019_3673_MOESM14_ESM.xlsx (1.7 mb)
Supplementary material 14 (XLSX 1693 kb)
11010_2019_3673_MOESM15_ESM.xlsx (47 kb)
Supplementary material 15 (XLSX 47 kb)
11010_2019_3673_MOESM16_ESM.xlsx (738 kb)
Supplementary material 16 (XLSX 737 kb)
11010_2019_3673_MOESM17_ESM.xlsx (123 kb)
Supplementary material 17 (XLSX 123 kb)
11010_2019_3673_MOESM18_ESM.xlsx (184 kb)
Supplementary material 18 (XLSX 183 kb)
11010_2019_3673_MOESM19_ESM.xlsx (27 kb)
Supplementary material 19 (XLSX 27 kb)
11010_2019_3673_MOESM20_ESM.xlsx (39 kb)
Supplementary material 20 (XLSX 39 kb)
11010_2019_3673_MOESM21_ESM.xlsx (77 kb)
Supplementary material 21 (XLSX 77 kb)
11010_2019_3673_MOESM22_ESM.xlsx (17 kb)
Supplementary material 22 (XLSX 17 kb)
11010_2019_3673_MOESM23_ESM.xlsx (21 kb)
Supplementary material 23 (XLSX 21 kb)
11010_2019_3673_MOESM24_ESM.xlsx (25 kb)
Supplementary material 24 (XLSX 25 kb)
11010_2019_3673_MOESM25_ESM.xlsx (14 kb)
Supplementary material 25 (XLSX 14 kb)
11010_2019_3673_MOESM26_ESM.xlsx (14 kb)
Supplementary material 26 (XLSX 14 kb)

References

  1. 1.
    Moraga P, GBD 2016 Causes of Death Collaborators (2017) Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1151–1210.  https://doi.org/10.1016/s0140-6736(17)32152-9 CrossRefGoogle Scholar
  2. 2.
    Navarese EP, Robinson JG, Kowalewski M, Kolodziejczak M, Andreotti F, Bliden K, Tantry U, Kubica J, Raggi P, Gurbel PA (2018) Association between baseline LDL-C Level and total and cardiovascular mortality after LDL-C lowering: a systematic review and meta-analysis. JAMA 319:1566–1579.  https://doi.org/10.1001/jama.2018.2525 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, Barrett JH, Konig IR, Stevens SE, Szymczak S, Tregouet DA, Iles MM, Pahlke F, Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W, Blankenberg S, Balmforth AJ, Baessler A, Ball SG, Strom TM, Braenne I, Gieger C, Deloukas P, Tobin MD, Ziegler A, Thompson JR, Schunkert H (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357:443–453.  https://doi.org/10.1056/NEJMoa072366 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, Ahmadi K, Dobson RJ, Marcano AC, Hajat C, Burton P, Deloukas P, Brown M, Connell JM, Dominiczak A, Lathrop GM, Webster J, Farrall M, Spector T, Samani NJ, Caulfield MJ, Munroe PB (2008) Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 82:139–149.  https://doi.org/10.1016/j.ajhg.2007.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nakayama K, Bayasgalan T, Yamanaka K, Kumada M, Gotoh T, Utsumi N, Yanagisawa Y, Okayama M, Kajii E, Ishibashi S, Iwamoto S (2009) Large scale replication analysis of loci associated with lipid concentrations in a Japanese population. J Med Genet 46:370–374.  https://doi.org/10.1136/jmg.2008.064063 CrossRefPubMedGoogle Scholar
  6. 6.
    Arvind P, Nair J, Jambunathan S, Kakkar VV, Shanker J (2014) CELSR2-PSRC1-SORT1 gene expression and association with coronary artery disease and plasma lipid levels in an Asian Indian cohort. J Cardiol 64:339–346.  https://doi.org/10.1016/j.jjcc.2014.02.012 CrossRefPubMedGoogle Scholar
  7. 7.
    Muendlein A, Geller-Rhomberg S, Saely CH, Winder T, Sonderegger G, Rein P, Beer S, Vonbank A, Drexel H (2009) Significant impact of chromosomal locus 1p13.3 on serum LDL cholesterol and on angiographically characterized coronary atherosclerosis. Atherosclerosis 206:494–499.  https://doi.org/10.1016/j.atherosclerosis.2009.02.040 CrossRefPubMedGoogle Scholar
  8. 8.
    Samani NJ, Braund PS, Erdmann J, Gotz A, Tomaszewski M, Linsel-Nitschke P, Hajat C, Mangino M, Hengstenberg C, Stark K, Ziegler A, Caulfield M, Burton PR, Schunkert H, Tobin MD (2008) The novel genetic variant predisposing to coronary artery disease in the region of the PSRC1 and CELSR2 genes on chromosome 1 associates with serum cholesterol. J Mol Med (Berl) 86:1233–1241.  https://doi.org/10.1007/s00109-008-0387-2 CrossRefGoogle Scholar
  9. 9.
    Ronald J, Rajagopalan R, Ranchalis JE, Marshall JK, Hatsukami TS, Heagerty PJ, Jarvik GP (2009) Analysis of recently identified dyslipidemia alleles reveals two loci that contribute to risk for carotid artery disease. Lipids Health Dis 8:52.  https://doi.org/10.1186/1476-511x-8-52 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ciuculete DM, Bandstein M, Benedict C, Waeber G, Vollenweider P, Lind L, Schioth HB, Mwinyi J (2017) A genetic risk score is significantly associated with statin therapy response in the elderly population. Clin Genet 91:379–385.  https://doi.org/10.1111/cge.12890 CrossRefPubMedGoogle Scholar
  11. 11.
    Lo PK, Chen JY, Lo WC, Chen BF, Hsin JP, Tang PP, Wang FF (1999) Identification of a novel mouse p53 target gene DDA3. Oncogene 18:7765–7774.  https://doi.org/10.1038/sj.onc.1203167 CrossRefPubMedGoogle Scholar
  12. 12.
    Xi D, Zhao J, Liu J, Xiong H, He W, Hu J, Lai W, Guo Z (2016) The impact of serum amyloid P-component on gene expression in RAW264.7 mouse macrophages. Biomed Res Int 2016:9380290.  https://doi.org/10.1155/2016/9380290 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Guo K, Hu L, Xi D, Zhao J, Liu J, Luo T, Ma Y, Lai W, Guo Z (2018) PSRC1 overexpression attenuates atherosclerosis progression in apoE(-/-) mice by modulating cholesterol transportation and inflammation. J Mol Cell Cardiol 116:69–80.  https://doi.org/10.1016/j.yjmcc.2018.01.013 CrossRefPubMedGoogle Scholar
  14. 14.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111.  https://doi.org/10.1093/bioinformatics/btp120 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515.  https://doi.org/10.1038/nbt.1621 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328:1566–1569.  https://doi.org/10.1126/science.1189123 CrossRefPubMedGoogle Scholar
  17. 17.
    Hafner M, Rezen T, Rozman D (2011) Regulation of hepatic cytochromes p450 by lipids and cholesterol. Curr Drug Metab 12:173–185CrossRefGoogle Scholar
  18. 18.
    Huang H, Xie Z, Yokoyama W, Yu L, Wang TT (2016) Identification of liver CYP51 as a gene responsive to circulating cholesterol in a hamster model. J Nutr Sci 5:e16.  https://doi.org/10.1017/jns.2016.3 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    DeBose-Boyd RA, Ye J (2018) SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci 43:358–368.  https://doi.org/10.1016/j.tibs.2018.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J (2009) Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 15:804–816.  https://doi.org/10.3748/wjg.15.804 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Blanchard V, Khantalin I, Ramin-Mangata S, Chemello K, Nativel B, Lambert G (2019) PCSK9: from biology to clinical applications. Pathology 51:177–183.  https://doi.org/10.1016/j.pathol.2018.10.012 CrossRefPubMedGoogle Scholar
  22. 22.
    Marechal L, Laviolette M, Rodrigue-Way A, Sow B, Brochu M, Caron V, Tremblay A (2018) The CD36-PPARgamma pathway in metabolic disorders. Int J Mol Sci.  https://doi.org/10.3390/ijms19051529 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K, Silverstein RL (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 105:1049–1056.  https://doi.org/10.1172/jci9259 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pearen MA, Muscat GE (2010) Minireview: nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol Endocrinol 24:1891–1903.  https://doi.org/10.1210/me.2010-0015 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chao LC, Wroblewski K, Zhang Z, Pei L, Vergnes L, Ilkayeva OR, Ding SY, Reue K, Watt MJ, Newgard CB, Pilch PF, Hevener AL, Tontonoz P (2009) Insulin resistance and altered systemic glucose metabolism in mice lacking Nur77. Diabetes 58:2788–2796.  https://doi.org/10.2337/db09-0763 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Weinhofer I, Kunze M, Rampler H, Bookout AL, Forss-Petter S, Berger J (2005) Liver X receptor alpha interferes with SREBP1c-mediated Abcd2 expression. Novel cross-talk in gene regulation. J Biol Chem 280:41243–41251.  https://doi.org/10.1074/jbc.M509450200 CrossRefPubMedGoogle Scholar
  27. 27.
    Malaval C, Laffargue M, Barbaras R, Rolland C, Peres C, Champagne E, Perret B, Terce F, Collet X, Martinez LO (2009) RhoA/ROCK I signalling downstream of the P2Y13 ADP-receptor controls HDL endocytosis in human hepatocytes. Cell Signal 21:120–127.  https://doi.org/10.1016/j.cellsig.2008.09.016 CrossRefPubMedGoogle Scholar
  28. 28.
    Sedgwick A, Olivia Balmert M, D’Souza-Schorey C (2018) The formation of giant plasma membrane vesicles enable new insights into the regulation of cholesterol efflux. Exp Cell Res 365:194–207.  https://doi.org/10.1016/j.yexcr.2018.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Singh RK, Haka AS, Bhardwaj P, Zha X, Maxfield FR (2019) Dynamic actin reorganization and Vav/Cdc42-dependent actin polymerization promote macrophage aggregated LDL (low-density lipoprotein) uptake and catabolism. Arterioscler Thromb Vasc Biol 39:137–149.  https://doi.org/10.1161/atvbaha.118.312087 CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou X, Yin Z, Guo X, Hajjar DP, Han J (2010) Inhibition of ERK1/2 and activation of liver X receptor synergistically induce macrophage ABCA1 expression and cholesterol efflux. J Biol Chem 285:6316–6326.  https://doi.org/10.1074/jbc.M109.073601 CrossRefPubMedGoogle Scholar
  31. 31.
    Liu T, Li C, Sun H, Luo T, Tan Y, Tian D, Guo Z (2014) Curcumin inhibits monocyte chemoattractant protein-1 expression and enhances cholesterol efflux by suppressing the c-Jun N-terminal kinase pathway in macrophage. Inflamm Res 63:841–850.  https://doi.org/10.1007/s00011-014-0758-9 CrossRefPubMedGoogle Scholar
  32. 32.
    Liu J, Guo K, Hu L, Luo T, Ma Y, Zhang Y, Lai W, Guo Z (2019) ZAP70 deficiency promotes reverse cholesterol transport through MAPK/ERK pathway in Jurkat cell. Mol Immunol 107:21–28.  https://doi.org/10.1016/j.molimm.2019.01.001 CrossRefPubMedGoogle Scholar
  33. 33.
    Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407.  https://doi.org/10.1016/j.cell.2018.01.011 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of CardiologyZhongshan People’s HospitalZhongshan CityChina
  2. 2.Department of Medical Intensive Care UnitZhongshan People’s HospitalZhongshan CityChina
  3. 3.Department of GeriatricsThe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai CityChina

Personalised recommendations