Skip to main content

Advertisement

Log in

Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Dengue, caused by dengue virus (DENV) infection, is a public health problem worldwide. Although DENV pathogenesis has not yet been fully elucidated, the inflammatory response is a hallmark feature in severe DENV infection. Although vitamin D (vitD) can promote the innate immune response against virus infection, no studies have evaluated the effects of vitD on DENV infection, dendritic cells (DCs), and inflammatory response regulation. This study aimed to assess the impact of oral vitD supplementation on DENV-2 infection, Toll-like receptor (TLR) expression, and both pro- and anti-inflammatory cytokine production in monocyte-derived DCs (MDDCs). To accomplish this, 20 healthy donors were randomly divided into two groups and received either 1000 or 4000 international units (IU)/day of vitD for 10 days. During pre- and post-vitD supplementation, peripheral blood samples were taken to obtain MDDCs, which were challenged with DENV-2. We found that MDDCs from donors who received 4000 IU/day of vitD were less susceptible to DENV-2 infection than MDDCs from donors who received 1000 IU/day of vitD. Moreover, these cells showed decreased mRNA expression of TLR3, 7, and 9; downregulation of IL-12/IL-8 production; and increased IL-10 secretion in response to DENV-2 infection. In conclusion, the administration of 4000 IU/day of vitD decreased DENV-2 infection. Our findings support a possible role of vitD in improving the innate immune response against DENV. However, further studies are necessary to determine the role of vitD on DENV replication and its innate immune response modulation in MDDCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507. https://doi.org/10.1038/nature12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guzman MG, Harris E (2014) Dengue. Lancet 385(9966):453–465. https://doi.org/10.1016/s0140-6736(14)60572-9

    Article  PubMed  Google Scholar 

  3. Guabiraba R, Ryffel B (2013) Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 141(2):143–156. https://doi.org/10.1111/imm.12188

    Article  CAS  Google Scholar 

  4. Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD (2017) High dengue virus load differentially modulates human microvascular endothelial barrier function during early infection. J Gen Virol 98(12):2993–3007. https://doi.org/10.1099/jgv.0.000981

    Article  CAS  PubMed  Google Scholar 

  5. Luplertlop N, Misse D, Bray D, Deleuze V, Gonzalez JP, Leardkamolkarn V, Yssel H, Veas F (2006) Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO Rep 7(11):1176–1181. https://doi.org/10.1038/sj.embor.7400814

    Article  CAS  PubMed  Google Scholar 

  6. Torres S, Flipse J, Upasani VC, van der Ende-Metselaar H, Urcuqui-Inchima S, Smit JM, Rodenhuis-Zybert IA (2016) Altered immune response of immature dendritic cells following dengue virus infection in the presence of specific antibodies. J Gen Virol 97(7):1584–1591. https://doi.org/10.1099/jgv.0.000491

    Article  CAS  PubMed  Google Scholar 

  7. Torres S, Hernandez JC, Giraldo D, Arboleda M, Rojas M, Smit JM, Urcuqui-Inchima S (2013) Differential expression of Toll-like receptors in dendritic cells of patients with dengue during early and late acute phases of the disease. PLoS Negl Trop Dis 7(2):e2060. https://doi.org/10.1371/journal.pntd.0002060pntd-d-12-00843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lai JH, Wang MY, Huang CY, Wu CH, Hung LF, Yang CY, Ke PY, Luo SF, Liu SJ, Ho LJ (2018) Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells. EMBO Rep. https://doi.org/10.15252/embr.201846182

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hsu YL, Wang MY, Ho LJ, Lai JH (2016) Dengue virus infection induces interferon-lambda1 to facilitate cell migration. Sci Rep 6:24530. https://doi.org/10.1038/srep24530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akira S (2006) TLR signaling. Curr Top Microbiol Immunol 311:1–16

    CAS  PubMed  Google Scholar 

  11. Chen J, Ng MM, Chu JJ (2015) Activation of TLR2 and TLR6 by dengue NS1 protein and its implications in the immunopathogenesis of dengue virus infection. PLoS Pathog 11(7):e1005053. https://doi.org/10.1371/journal.ppat.1005053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. George JA, Kim SB, Choi JY, Patil AM, Hossain FMA, Uyangaa E, Hur J, Park SY, Lee JH, Kim K, Eo SK (2017) TLR2/MyD88 pathway-dependent regulation of dendritic cells by dengue virus promotes antibody-dependent enhancement via Th2-biased immunity. Oncotarget 8(62):106050–106070. https://doi.org/10.18632/oncotarget.22525

    Article  PubMed  PubMed Central  Google Scholar 

  13. Beard JA, Bearden A, Striker R (2011) Vitamin D and the anti-viral state. J Clin Virol 50(3):194–200. https://doi.org/10.1016/j.jcv.2010.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giraldo DM, Cardona A, Urcuqui-Inchima S (2018) High-dose of vitamin D supplement is associated with reduced susceptibility of monocyte-derived macrophages to dengue virus infection and pro-inflammatory cytokine production: an exploratory study. Clin Chim Acta 478:140–151. https://doi.org/10.1016/j.cca.2017.12.044

    Article  CAS  PubMed  Google Scholar 

  15. Arboleda Alzate JF, Rodenhuis-Zybert IA, Hernandez JC, Smit JM, Urcuqui-Inchima S (2017) Human macrophages differentiated in the presence of vitamin D3 restrict dengue virus infection and innate responses by downregulating mannose receptor expression. PLoS Negl Trop Dis 11(10):e0005904. https://doi.org/10.1371/journal.pntd.0005904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Puerta-Guardo H, Medina F, De la Cruz Hernandez SI, Rosales VH, Ludert JE, del Angel RM (2012) The 1alpha,25-dihydroxy-vitamin D3 reduces dengue virus infection in human myelomonocyte (U937) and hepatic (Huh-7) cell lines and cytokine production in the infected monocytes. Antiviral Res 94(1):57–61. https://doi.org/10.1016/j.antiviral.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  17. Alagarasu K, Honap T, Mulay AP, Bachal RV, Shah PS, Cecilia D (2012) Association of vitamin D receptor gene polymorphisms with clinical outcomes of dengue virus infection. Hum Immunol 73(11):1194–1199. https://doi.org/10.1016/j.humimm.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  18. Bartels LE, Hvas CL, Agnholt J, Dahlerup JF, Agger R (2010) Human dendritic cell antigen presentation and chemotaxis are inhibited by intrinsic 25-hydroxy vitamin D activation. Int Immunopharmacol 10(8):922–928. https://doi.org/10.1016/j.intimp.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  19. Gottfried E, Rehli M, Hahn J, Holler E, Andreesen R, Kreutz M (2006) Monocyte-derived cells express CYP27A1 and convert vitamin D3 into its active metabolite. Biochem Biophys Res Commun 349(1):209–213. https://doi.org/10.1016/j.bbrc.2006.08.034

    Article  CAS  PubMed  Google Scholar 

  20. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96(1):53–58. https://doi.org/10.1210/jc.2010-2704

    Article  CAS  PubMed  Google Scholar 

  21. Vieth R (1999) Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 69(5):842–856

    Article  CAS  Google Scholar 

  22. Nair S, Archer GE, Tedder TF (2012) Isolation and generation of human dendritic cells. Curr Protoc Immunol Chapter 7(Unit7):32. https://doi.org/10.1002/0471142735.im0732s99

    Article  Google Scholar 

  23. Lambeth CR, White LJ, Johnston RE, de Silva AM (2005) Flow cytometry-based assay for titrating dengue virus. J Clin Microbiol 43(7):3267–3272. https://doi.org/10.1128/jcm.43.7.3267-3272.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diamond MS, Edgil D, Roberts TG, Lu B, Harris E (2000) Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 74(17):7814–7823

    Article  CAS  Google Scholar 

  25. Shu PY, Chang SF, Kuo YC, Yueh YY, Chien LJ, Sue CL, Lin TH, Huang JH (2003) Development of group- and serotype-specific one-step SYBR green I-based real-time reverse transcription-PCR assay for dengue virus. J Clin Microbiol 41(6):2408–2416

    Article  CAS  Google Scholar 

  26. Brosbol-Ravnborg A, Bundgaard B, Hollsberg P (2013) Synergy between vitamin D(3) and Toll-like receptor agonists regulates human dendritic cell response during maturation. Clin Dev Immunol 2013:807971. https://doi.org/10.1155/2013/807971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng C, Feng M, Jiao R, Liu D, Jin Y, Zhao X, Xiao R (2016) Effect of Dezocine on IL-12 and IL-10 secretion and lymphocyte activation by culturing dendritic cells from human umbilical cord blood. Eur J Pharmacol 796:110–114. https://doi.org/10.1016/j.ejphar.2016.12.035

    Article  CAS  PubMed  Google Scholar 

  28. Lang PO, Samaras N, Samaras D, Aspinall R (2013) How important is vitamin D in preventing infections? Osteoporos Int 24(5):1537–1553. https://doi.org/10.1007/s00198-012-2204-6

    Article  CAS  PubMed  Google Scholar 

  29. Ho LJ, Wang JJ, Shaio MF, Kao CL, Chang DM, Han SW, Lai JH (2001) Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol 166(3):1499–1506

    Article  CAS  Google Scholar 

  30. Haimi M, Kremer R (2017) Vitamin D deficiency/insufficiency from childhood to adulthood: insights from a sunny country. World J Clin Pediatr 6(1):1–9. https://doi.org/10.5409/wjcp.v6.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Holick MF (2012) Vitamin D: extraskeletal health. Rheum Dis Clin North Am 38(1):141–160. https://doi.org/10.1016/j.rdc.2012.03.013

    Article  PubMed  Google Scholar 

  32. Hoan NX, Tong HV, Song LH, Meyer CG, Velavan TP (2018) Vitamin D deficiency and hepatitis viruses-associated liver diseases: a literature review. World J Gastroenterol 24(4):445–460. https://doi.org/10.3748/wjg.v24.i4.445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Viard JP, Souberbielle JC, Kirk O, Reekie J, Knysz B, Losso M, Gatell J, Pedersen C, Bogner JR, Lundgren JD, Mocroft A, Euro SSG (2011) Vitamin D and clinical disease progression in HIV infection: results from the EuroSIDA study. Aids 25(10):1305–1315. https://doi.org/10.1097/QAD.0b013e328347f6f7

    Article  CAS  PubMed  Google Scholar 

  34. Loke H, Bethell D, Phuong CX, Day N, White N, Farrar J, Hill A (2002) Susceptibility to dengue hemorrhagic fever in vietnam: evidence of an association with variation in the vitamin d receptor and Fc gamma receptor IIa genes. Am J Trop Med Hyg 67(1):102–106

    Article  CAS  Google Scholar 

  35. Sanchez-Valdez E, Delgado-Aradillas M, Torres-Martinez JA, Torres-Benitez JM (2009) Clinical response in patients with dengue fever to oral calcium plus vitamin D administration: study of 5 cases. Proc West Pharmacol Soc 52:14–17

    CAS  PubMed  Google Scholar 

  36. Coussens AK, Naude CE, Goliath R, Chaplin G, Wilkinson RJ, Jablonski NG (2015) High-dose vitamin D3 reduces deficiency caused by low UVB exposure and limits HIV-1 replication in urban Southern Africans. Proc Natl Acad Sci USA 112(26):8052–8057. https://doi.org/10.1073/pnas.1500909112

    Article  CAS  PubMed  Google Scholar 

  37. Bergman P, Norlin AC, Hansen S, Rekha RS, Agerberth B, Bjorkhem-Bergman L, Ekstrom L, Lindh JD, Andersson J (2012) Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study. BMJ Open. https://doi.org/10.1136/bmjopen-2012-001663

    Article  PubMed  PubMed Central  Google Scholar 

  38. Aguilar-Jimenez W, Zapata W, Rugeles MT (2016) Antiviral molecules correlate with vitamin D pathway genes and are associated with natural resistance to HIV-1 infection. Microbes Infect 18(7–8):510–516. https://doi.org/10.1016/j.micinf.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  39. Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173(5):2909–2912

    Article  CAS  Google Scholar 

  40. Alagarasu K, Patil PS, Shil P, Seervi M, Kakade MB, Tillu H, Salunke A (2017) In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides 92:23–30. https://doi.org/10.1016/j.peptides.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  41. Lopez-Gonzalez M, Meza-Sanchez D, Garcia-Cordero J, Bustos-Arriaga J, Velez-Del Valle C, Marsch-Moreno M, Castro-Jimenez T, Flores-Romo L, Santos-Argumedo L, Gutierrez-Castaneda B, Cedillo-Barron L (2018) Human keratinocyte cultures (HaCaT) can be infected by DENV, triggering innate immune responses that include IFNlambda and LL37. Immunobiology 223(11):608–617. https://doi.org/10.1016/j.imbio.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  42. Berer A, Stockl J, Majdic O, Wagner T, Kollars M, Lechner K, Geissler K, Oehler L (2000) 1,25-Dihydroxyvitamin D(3) inhibits dendritic cell differentiation and maturation in vitro. Exp Hematol 28(5):575–583

    Article  CAS  Google Scholar 

  43. Kyle JL, Beatty PR, Harris E (2007) Dengue virus infects macrophages and dendritic cells in a mouse model of infection. J Infect Dis 195(12):1808–1817. https://doi.org/10.1086/518007

    Article  CAS  PubMed  Google Scholar 

  44. Dickie LJ, Church LD, Coulthard LR, Mathews RJ, Emery P, McDermott MF (2010) Vitamin D3 down-regulates intracellular Toll-like receptor 9 expression and Toll-like receptor 9-induced IL-6 production in human monocytes. Rheumatology (Oxford) 49(8):1466–1471. https://doi.org/10.1093/rheumatology/keq124

    Article  CAS  Google Scholar 

  45. Schmid MA, Diamond MS, Harris E (2014) Dendritic cells in dengue virus infection: targets of virus replication and mediators of immunity. Front Immunol 5:647. https://doi.org/10.3389/fimmu.2014.00647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang JP, Liu P, Latz E, Golenbock DT, Finberg RW, Libraty DH (2006) Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177(10):7114–7121

    Article  CAS  Google Scholar 

  47. Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11(4):604–615. https://doi.org/10.1111/j.1462-5822.2008.01277.x

    Article  CAS  PubMed  Google Scholar 

  48. Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX (2011) RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5(1):e926. https://doi.org/10.1371/journal.pntd.0000926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Balakrishna Pillai A, Cherupanakkal C, Immanuel J, Saravanan E, Eswar Kumar V, Kadhiravan T, Rajendiran S (2019) Expression pattern of selected Toll-like receptors (TLR’s) in the PBMC’s of severe and non-severe dengue cases. Immunol Invest. https://doi.org/10.1080/08820139.2019.1653908

    Article  PubMed  Google Scholar 

  50. Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7(8):610–621. https://doi.org/10.1038/nri2132

    Article  CAS  PubMed  Google Scholar 

  51. Basu A, Chaturvedi UC (2008) Vascular endothelium: the battlefield of dengue viruses. FEMS Immunol Med Microbiol 53(3):287–299. https://doi.org/10.1111/j.1574-695x.2008.00420.x

    Article  CAS  PubMed  Google Scholar 

  52. Croxford AL, Kulig P, Becher B (2014) IL-12-and IL-23 in health and disease. Cytokine Growth Factor Rev 25(4):415–421. https://doi.org/10.1016/j.cytogfr.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  53. Matilainen JM, Husso T, Toropainen S, Seuter S, Turunen MP, Gynther P, Yla-Herttuala S, Carlberg C, Vaisanen S (2010) Primary effect of 1alpha,25(OH)(2)D(3) on IL-10 expression in monocytes is short-term down-regulation. Biochim Biophys Acta 11:1276–1286. https://doi.org/10.1016/j.bbamcr.2010.07.009

    Article  CAS  Google Scholar 

  54. Pedersen AW, Holmstrom K, Jensen SS, Fuchs D, Rasmussen S, Kvistborg P, Claesson MH, Zocca MB (2009) Phenotypic and functional markers for 1alpha,25-dihydroxyvitamin D(3)-modified regulatory dendritic cells. Clin Exp Immunol 157(1):48–59. https://doi.org/10.1111/j.1365-2249.2009.03961.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chunhakan S, Butthep P, Yoksan S, Tangnararatchakit K, Chuansumrit A (2015) Vascular leakage in dengue hemorrhagic fever is associated with dengue infected monocytes, monocyte activation/exhaustion, and cytokines production. Int J Vasc Med 2015:917143. https://doi.org/10.1155/2015/917143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18(5):605–617

    Article  CAS  Google Scholar 

  57. Marin-Palma D, Sirois CM, Urcuqui-Inchima S, Hernandez JC (2019) Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. PLoS ONE 14(3):e0214245. https://doi.org/10.1371/journal.pone.0214245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Malavige GN, Gomes L, Alles L, Chang T, Salimi M, Fernando S, Nanayakkara KD, Jayaratne S, Ogg GS (2013) Serum IL-10 as a marker of severe dengue infection. BMC Infect Dis 13:341. https://doi.org/10.1186/1471-2334-13-341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Adikari TN, Gomes L, Wickramasinghe N, Salimi M, Wijesiriwardana N, Kamaladasa A, Shyamali NL, Ogg GS, Malavige GN (2016) Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes. Clin Exp Immunol 184(1):90–100. https://doi.org/10.1111/cei.12747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hoe E, Nathanielsz J, Toh ZQ, Spry L, Marimla R, Balloch A, Mulholland K, Licciardi PV (2016) Anti-inflammatory effects of vitamin D on human immune cells in the context of bacterial infection. Nutrients. https://doi.org/10.3390/nu8120806

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ikeuchi T, Nakamura T, Fukumoto S, Takada H (2012) A vitamin D3 analog augmented interleukin-8 production by human monocytic cells in response to various microbe-related synthetic ligands, especially NOD2 agonistic muramyldipeptide. Int Immunopharmacol 15(1):15–22. https://doi.org/10.1016/j.intimp.2012.10.027

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Colciencias under Grant 111556933443, Colombia; and Universidad de Antioquia, UdeA. The funders had no role in study design, data collection and analyses, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Funding acquisition and project administration: SUI; conceived and designed the experiments: JM and SUI; investigation: JM and JCH; formal analysis: JM and SUI; writing original draft: JM, JCH, and SUI; writing review and editing: SUI. Approval of article for publication: JM, JCH, and SUI.

Corresponding author

Correspondence to Silvio Urcuqui-Inchima.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Moreno, J., Hernandez, J.C. & Urcuqui-Inchima, S. Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Mol Cell Biochem 464, 169–180 (2020). https://doi.org/10.1007/s11010-019-03658-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03658-w

Keywords

Navigation