Advertisement

Calycosin-7-O-β-d-glucoside attenuates myocardial ischemia–reperfusion injury by activating JAK2/STAT3 signaling pathway via the regulation of IL-10 secretion in mice

  • Yujie Liu
  • Guoying Che
  • Zhixin Di
  • Weinan Sun
  • Jiawei TianEmail author
  • Min RenEmail author
Article
  • 50 Downloads

Abstract

Calycosin-7-O-β-d-glucoside (CG) is the component of Astragali Radix, and the aim of the present study is to investigate whether CG protects myocardium from I/R-induced damage by the regulation of IL-10/JAK2/STAT3 signaling pathway. H9C2 cells were subjected to I/R treatment and pretreated with 1 μm CG in vitro. In addition, a mouse model of myocardial I/R injury was induced by left anterior descending (LAD) coronary artery ligation and administrated with 30 mg/kg CG by intravenous injection before I/R surgery. In vitro and in vivo results showed that CG up-regulated IL-10 level, activated the JAK2/STAT3 pathway, and protected myocardial cells from I/R-induced apoptosis. The hemodynamic measurement, TTC staining, TUNEL staining, and western blot results in vivo showed that the protective effects of CG on myocardial function and cell apoptosis were all reversed by the IL-10R α neutralizing antibody. CG-induced phosphorylation activation of JAK2/STAT3 signaling pathway was also suppressed by the blocking of IL-10. In summary, these findings suggest that CG might alleviate myocardial I/R injury by activating the JAK2/STAT3 signaling pathway via up-regulation of IL-10 secretion, which provides us insights into the mechanism underlying the protective effect of CG on myocardial I/R injury.

Keywords

Calycosin-7-O-β-d-glucoside Myocardial ischemia–reperfusion IL-10 JAK2/STAT3 signaling pathway 

Notes

Funding

This study was supported by grants from the National Natural Science Foundation of China (Nos. 81701720 and 81571680).

Compliance with ethical standards

Conflict of interest

All authors declare that there are no conflicts of interest in this study.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Supplementary material

11010_2019_3639_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1282 kb)

References

  1. 1.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Executive summary: heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127(1):143–152.  https://doi.org/10.1161/CIR.0b013e318282ab8f CrossRefPubMedGoogle Scholar
  2. 2.
    Cannon CP, Gibson CM, Lambrew CT, Shoultz DA, Levy D, French WJ, Gore JM, Weaver WD, Rogers WJ, Tiefenbrunn AJ (2000) Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA 283(22):2941–2947CrossRefGoogle Scholar
  3. 3.
    Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135.  https://doi.org/10.1056/NEJMra071667 CrossRefPubMedGoogle Scholar
  4. 4.
    Zhu HJ, Wang DG, Yan J, Xu J (2015) Up-regulation of microRNA-135a protects against myocardial ischemia/reperfusion injury by decreasing TXNIP expression in diabetic mice. Am J Transl Res 7(12):2661–2671PubMedPubMedCentralGoogle Scholar
  5. 5.
    Cao J, Xie H, Sun Y, Zhu J, Ying M, Qiao S, Shao Q, Wu H, Wang C (2015) Sevoflurane post-conditioning reduces rat myocardial ischemia reperfusion injury through an increase in NOS and a decrease in phopshorylated NHE1 levels. Am J Transl Res 36(6):1529–1537.  https://doi.org/10.3892/ijmm.2015.2366 CrossRefGoogle Scholar
  6. 6.
    Liu XH, Zhao JB, Guo L, Yang YL, Hu F, Zhu RJ, Feng SL (2014) Simultaneous determination of calycosin-7-O-beta-d-glucoside, ononin, calycosin, formononetin, astragaloside IV, and astragaloside II in rat plasma after oral administration of Radix Astragali extraction for their pharmacokinetic studies by ultra-pressure liquid chromatography with tandem mass spectrometry. Am J Transl Res 70(1):677–686.  https://doi.org/10.1007/s12013-014-9972-x CrossRefGoogle Scholar
  7. 7.
    Zhao P, Su G, Xiao X, Hao E, Zhu X, Ren J (2008) Chinese medicinal herb Radix Astragali suppresses cardiac contractile dysfunction and inflammation in a rat model of autoimmune myocarditis. Toxicol Lett 182(1–3):29–35.  https://doi.org/10.1016/j.toxlet.2008.08.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Yin B, Hou XW, Lu ML (2018) Astragaloside IV attenuates myocardial ischemia/reperfusion injury in rats via inhibition of calcium-sensing receptor-mediated apoptotic signaling pathways. Acta Pharmacol Sin.  https://doi.org/10.1038/s41401-018-0082-y CrossRefPubMedGoogle Scholar
  9. 9.
    Ren M, Wang X, Du G, Tian J, Liu Y (2016) Calycosin7Obetadglucoside attenuates ischemiareperfusion injury in vivo via activation of the PI3K/Akt pathway. Mol Med Rep 13(1):633–640.  https://doi.org/10.3892/mmr.2015.4611 CrossRefPubMedGoogle Scholar
  10. 10.
    Fu S, Gu Y, Jiang JQ, Chen X, Xu M, Shen J (2014) Calycosin-7-O-beta-d-glucoside regulates nitric oxide/caveolin-1/matrix metalloproteinases pathway and protects blood-brain barrier integrity in experimental cerebral ischemia–reperfusion injury. J Ethnopharmacol 155(1):692–701.  https://doi.org/10.1016/j.jep.2014.06.015 CrossRefPubMedGoogle Scholar
  11. 11.
    Manukyan MC, Alvernaz CH, Poynter JA, Wang Y, Brewster BD, Weil BR, Abarbanell AM, Herrmann JL, Crowe BJ, Keck AC, Meldrum DR (2011) Interleukin-10 protects the ischemic heart from reperfusion injury via the STAT3 pathway. Surgery 150(2):231–239.  https://doi.org/10.1016/j.surg.2011.05.017 CrossRefPubMedGoogle Scholar
  12. 12.
    Gupta M, Han JJ, Stenson M, Maurer M, Wellik L, Hu G, Ziesmer S, Dogan A, Witzig TE (2012) Elevated serum IL-10 levels in diffuse large B-cell lymphoma: a mechanism of aberrant JAK2 activation. Blood 119(12):2844–2853.  https://doi.org/10.1182/blood-2011-10-388538 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    O’Farrell AM, Liu Y, Moore KW, Mui AL (1998) IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J 17(4):1006–1018.  https://doi.org/10.1093/emboj/17.4.1006 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Staples KJ, Smallie T, Williams LM, Foey A, Burke B, Foxwell BM, Ziegler-Heitbrock L (2007) IL-10 induces IL-10 in primary human monocyte-derived macrophages via the transcription factor Stat3. J Immunol 178(8):4779–4785CrossRefGoogle Scholar
  15. 15.
    Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E 3rd, Zhang Y (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104(41):16158–16163.  https://doi.org/10.1073/pnas.0702596104 CrossRefGoogle Scholar
  16. 16.
    Gonzalez-Reyes A, Menaouar A, Yip D, Danalache B, Plante E, Noiseux N, Gutkowska J, Jankowski M (2015) Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simulated ischemia–reperfusion. Mol Cell Endocrinol 412:170–181.  https://doi.org/10.1016/j.mce.2015.04.028 CrossRefPubMedGoogle Scholar
  17. 17.
    Mizukami Y, Kobayashi S, Uberall F, Hellbert K, Kobayashi N, Yoshida K (2000) Nuclear mitogen-activated protein kinase activation by protein kinase czeta during reoxygenation after ischemic hypoxia. J Biol Chem 275(26):19921–19927.  https://doi.org/10.1074/jbc.M907901199 CrossRefPubMedGoogle Scholar
  18. 18.
    Parajuli N, Yuan Y, Zheng X, Bedja D, Cai ZP (2012) Phosphatase PTEN is critically involved in post-myocardial infarction remodeling through the Akt/interleukin-10 signaling pathway. Basic Res Cardiol 107(2):248.  https://doi.org/10.1007/s00395-012-0248-6 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cai ZP, Parajuli N, Zheng X, Becker L (2012) Remote ischemic preconditioning confers late protection against myocardial ischemia–reperfusion injury in mice by upregulating interleukin-10. Basic Res Cardiol 107(4):277.  https://doi.org/10.1007/s00395-012-0277-1 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Prasad A, Stone GW, Holmes DR, Gersh B (2009) Reperfusion injury, microvascular dysfunction, and cardioprotection: the “dark side” of reperfusion. Circulation 120(21):2105–2112.  https://doi.org/10.1161/CIRCULATIONAHA.108.814640 CrossRefPubMedGoogle Scholar
  21. 21.
    Ahmed LA, Salem HA, Attia AS, El-Sayed ME (2009) Enhancement of amlodipine cardioprotection by quercetin in ischaemia/reperfusion injury in rats. J Clin Pharm Ther 61(9):1233–1241.  https://doi.org/10.1211/jpp/61.09.0014 CrossRefGoogle Scholar
  22. 22.
    Moens AL, Claeys MJ, Timmermans JP, Vrints CJ (2005) Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. J Clin Pharm Ther 100(2):179–190.  https://doi.org/10.1016/j.ijcard.2004.04.013 CrossRefGoogle Scholar
  23. 23.
    Buja LM, Weerasinghe P (2010) Unresolved issues in myocardial reperfusion injury. J Clin Pharm Ther 19(1):29–35.  https://doi.org/10.1016/j.carpath.2008.10.001 CrossRefGoogle Scholar
  24. 24.
    Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. J Clin Pharm Ther 19:683–765.  https://doi.org/10.1146/annurev.immunol.19.1.683 CrossRefGoogle Scholar
  25. 25.
    Yang Z, Zingarelli B, Szabo C (2000) Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury. Circulation 101(9):1019–1026.  https://doi.org/10.1161/01.cir.101.9.1019 CrossRefPubMedGoogle Scholar
  26. 26.
    Hayward R, Nossuli TO, Scalia R, Lefer AM (1997) Cardioprotective effect of interleukin-10 in murine myocardial ischemia–reperfusion. Eur J Pharmacol 334(2–3):157–163CrossRefGoogle Scholar
  27. 27.
    Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, Kishore R (2009) IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res 104(2):e9–18.  https://doi.org/10.1161/CIRCRESAHA.108.188243 CrossRefPubMedGoogle Scholar
  28. 28.
    Markowski P, Boehm O, Goelz L, Haesner AL, Ehrentraut H, Bauerfeld K, Tran N, Zacharowski K, Weisheit C, Langhoff P, Schwederski M, Hilbert T, Klaschik S, Hoeft A, Baumgarten G, Meyer R, Knuefermann P (2013) Pre-conditioning with synthetic CpG-oligonucleotides attenuates myocardial ischemia/reperfusion injury via IL-10 up-regulation. Basic Res Cardiol 108(5):376.  https://doi.org/10.1007/s00395-013-0376-7 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Barry SP, Townsend PA, Latchman DS, Stephanou A (2007) Role of the JAK-STAT pathway in myocardial injury. Trends Mol Med 13(2):82–89.  https://doi.org/10.1016/j.molmed.2006.12.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Yang Y, Duan W, Jin Z, Yi W, Yan J, Zhang S, Wang N, Liang Z, Li Y, Chen W, Yi D, Yu S (2013) JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J Pineal Res 55(3):275–286.  https://doi.org/10.1111/jpi.12070 CrossRefPubMedGoogle Scholar
  31. 31.
    Fickenscher H, Hor S, Kupers H, Knappe A, Wittmann S, Sticht H (2002) The interleukin-10 family of cytokines. Trends Immunol 23(2):89–96CrossRefGoogle Scholar
  32. 32.
    Finbloom DS, Winestock KD (1995) IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol 155(3):1079–1090PubMedGoogle Scholar
  33. 33.
    Seidel HM, Lamb P, Rosen J (2000) Pharmaceutical intervention in the JAK/STAT signaling pathway. Oncogene 19(21):2645–2656.  https://doi.org/10.1038/sj.onc.1203550 CrossRefPubMedGoogle Scholar
  34. 34.
    Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou J, Zhang J, Jin Z, Yi D (2012) The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Res Cardiol 107(3):263.  https://doi.org/10.1007/s00395-012-0263-7 CrossRefPubMedGoogle Scholar
  35. 35.
    Wang Z, Yu J, Wu J, Qi F, Wang H, Xu Z (2016) Scutellarin protects cardiomyocyte ischemia–reperfusion injury by reducing apoptosis and oxidative stress. Life Sci 157:200–207.  https://doi.org/10.1016/j.lfs.2016.01.018 CrossRefPubMedGoogle Scholar
  36. 36.
    Luan HF, Zhao ZB, Zhao QH, Zhu P, Xiu MY, Ji Y (2012) Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Braz J Med Biol Res 45(10):898–905CrossRefGoogle Scholar
  37. 37.
    Fan Y, Zhang R, Liu B, Zhang Z (2001) Studies on association between lipoprotein lipase gene polymorphisms of Pvu II site and hypertriglyceridemics in Chinese. Chin J Med Genet 18(4):296–298Google Scholar
  38. 38.
    Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui MA, Das DK (2001) Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol 33(11):1929–1936.  https://doi.org/10.1006/jmcc.2001.1456 CrossRefPubMedGoogle Scholar
  39. 39.
    Goodman MD, Koch SE, Afzal MR, Butler KL (2011) STAT subtype specificity and ischemic preconditioning in mice: is STAT-3 enough? AM J Physiol-heart C 300(2):H522–H526.  https://doi.org/10.1152/ajpheart.00231.2010 CrossRefGoogle Scholar
  40. 40.
    Frangogiannis NG, Mendoza LH, Lindsey ML, Ballantyne CM, Michael LH, Smith CW, Entman ML (2000) IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol 165(5):2798–2808.  https://doi.org/10.4049/jimmunol.165.5.2798 CrossRefPubMedGoogle Scholar
  41. 41.
    Curato C, Slavic S, Dong J, Skorska A, Altarche-Xifro W, Miteva K, Kaschina E, Thiel A, Imboden H, Wang J, Steckelings U, Steinhoff G, Unger T, Li J (2010) Identification of noncytotoxic and IL-10-producing CD8+AT2R+ T cell population in response to ischemic heart injury. J Immunol 185(10):6286–6293.  https://doi.org/10.4049/jimmunol.0903681 CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang Y, Wei L, Sun D, Cao F, Gao H, Zhao L, Du J, Li Y, Wang H (2010) Tanshinone IIA pretreatment protects myocardium against ischaemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway in diabetic rats. Diabetes Obes Metab 12(4):316–322.  https://doi.org/10.1111/j.1463-1326.2009.01166.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ultrasound MedicineThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China
  2. 2.Department of Ultrasound Medicine, Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiPeople’s Republic of China

Personalised recommendations