Effects of oral administration of common antioxidant supplements on the energy metabolism of red blood cells. Attenuation of oxidative stress-induced changes in Rett syndrome erythrocytes by CoQ10

  • Donato Di Pierro
  • Chiara Ciaccio
  • Diego Sbardella
  • Grazia Raffaella Tundo
  • Roberta Bernardini
  • Paolo Curatolo
  • Cinzia Galasso
  • Virginia Pironi
  • Massimiliano Coletta
  • Stefano MariniEmail author


Nutritional supplements are traditionally employed for overall health and for managing some health conditions, although controversies are found concerning the role of antioxidants‐mediated benefits in vivo. Consistently with its critical role in systemic redox buffering, red blood cell (RBC) is recognized as a biologically relevant target to investigate the effects of oxidative stress. In RBC, reduction of the ATP levels and adenylate energy charge brings to disturbance in intracellular redox status. In the present work, several popular antioxidant supplements were orally administrated to healthy adults and examined for their ability to induce changes on the energy metabolism and oxidative status in RBC. Fifteen volunteers (3 per group) were treated for 30 days per os with epigallocatechin gallate (EGCG) (1 g green tea extract containing 50% EGCG), resveratrol (325 mg), coenzyme Q10 (CoQ10) (300 mg), vitamin C (1 g), and vitamin E (400 U.I.). Changes in the cellular levels of high-energy compounds (i.e., ATP and its catabolites, NAD and GTP), GSH, GSSG, and malondialdehyde (MDA) were simultaneously analyzed by ion-pairing HPLC. Response to oxidative stress was further investigated through the oxygen radical absorptive capacity (ORAC) assay. According to our experimental approach, (i) CoQ10 appeared to be the most effective antioxidant inducing a high increase in ATP/ADP, ATP/AMP, GSH/GSSG ratio and ORAC value and, in turn, a reduction of NAD concentration, (ii) EGCG modestly modulated the intracellular energy charge potential, while (iii) Vitamin E, vitamin C, and resveratrol exhibited very weak effects. Given that, the antioxidant potential of CoQ10 was additionally assessed in a pilot study which considered individuals suffering from Rett syndrome (RTT), a severe X-linked neuro-developmental disorder in which RBC oxidative damages provide biological markers for redox imbalance and chronic hypoxemia. RTT patients (n = 11), with the typical clinical form, were supplemented for 12 months with CoQ10 (300 mg, once daily). Level of lipid peroxidation (MDA production) and energy state of RBCs were analyzed at 2 and 12 months. Our data suggest that CoQ10 may significantly attenuate the oxidative stress-induced damage in RTT erythrocytes.


Energy metabolism Red blood cells Antioxidant Coenzyme Q10 Rett syndrome 



The Grant of MIUR (Legge 232/2016, Articolo 1, Comma 314-337) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    Dandekar A, Mendez R, Zhang K (2015) Cross talk between er stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol 1292:205–214. CrossRefPubMedGoogle Scholar
  2. 2.
    Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health, oxidative medicine and cellular longevity. Oxid Med Cell Longev 2017:8416763. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jackson MJ (1999) An overview of methods for assessment of free radical activity in biology. Proc Nutr Soc 58:1001–1006. CrossRefPubMedGoogle Scholar
  4. 4.
    Fraga CG, Oteiza PI, Galleano M (2014) In vitro measurements and interpretation of total antioxidant capacity. Biochim Biophys Acta 1840:931–934. CrossRefPubMedGoogle Scholar
  5. 5.
    López-Alarcón C, Denicola A (2013) Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal Chim Acta 763:1–10. CrossRefPubMedGoogle Scholar
  6. 6.
    Niki E (2010) Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med 49:503–515. CrossRefPubMedGoogle Scholar
  7. 7.
    Carocho M, Ferreira IC (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology 51:15–25. CrossRefPubMedGoogle Scholar
  8. 8.
    Pandey KB, Rizvi SI (2010) Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid Med Cell Longev 3:2–12. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rodríguez J, Di Pierro D, Gioia M, Monaco S, Delgado R, Coletta M, Marini S (2006) Effects of a natural extract from Mangifera indica L, and its active compound, mangiferin, on energy state and lipid peroxidation of red blood cells. Biochim Biophys Acta 1760:1333–1342. CrossRefPubMedGoogle Scholar
  10. 10.
    Arbos KA, Claro LM, Borges L, Santos CA, Weffort-Santos AM (2008) Human erythrocytes as a system for evaluating the antioxidant capacity of vegetable extracts. Nutr Res 28:457–463. CrossRefPubMedGoogle Scholar
  11. 11.
    Alvarez-Suarez JM, Giampieri F, González-Paramás AM, Damiani E, Astolfi P, Martinez-Sanchez G, Bompadre S, Quiles JL, Santos-Buelga C, Battino M (2012) Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food Chem Toxicol 50:1508–1516. CrossRefPubMedGoogle Scholar
  12. 12.
    Kosenko EA, Aliev G, Tikhonova LA, Li Y, Poghosyan AC, Kaminsky YG (2012) Antioxidant status and energy state of erythrocytes in Alzheimer dementia: probing for markers. CNS Neurol Disord 11:926–932. CrossRefGoogle Scholar
  13. 13.
    Della Rovere F, Granata A, Broccio M, Zirilli A, Broccio G (1995) Hemoglobin oxidative stress in cancer. Anticancer Res 15:2089–2095PubMedGoogle Scholar
  14. 14.
    Chakraborty D, Bhattacharyya M (2001) Antioxidant defense status of red blood cells of patients with beta-thalassemia and Ebeta-thalassemia. Clin Chim Acta 305:123–129. CrossRefPubMedGoogle Scholar
  15. 15.
    Mohanty JG, Nagababu E, Rifkind JM (2014) Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 5:84. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kuhn V, Diederich L, Keller STC IV, Kramer CM, Lückstädt W, Panknin C, Suvorava T, Isakson BE, Kelm M, Cortese-Krott MM (2017) Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, Anemia. Antioxid Redox Signal 26:718–742. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kennett EC, Kuchel PW (2003) Redox reactions and electron transfer across the red cell membrane. IUBMB Life 55:375–385. CrossRefPubMedGoogle Scholar
  18. 18.
    Buehler P, Alayash AI (2005) Redox biology of blood revisited: the role of red blood cells in maintaining circulatory reductive capacity. Antioxid Redox Signaling 7:1755–1760. CrossRefGoogle Scholar
  19. 19.
    Agalakova NI, Gusev GP (2012) Fluoride induces oxidative stress and ATP depletion in the rat erythrocytes in vitro. Environ Toxicol Pharmacol. 34:334–337. CrossRefPubMedGoogle Scholar
  20. 20.
    Tavazzi B, Di Pierro D, Amorini AM, Fazzina G, Tuttobene M, Giardina B, Lazzarino G (2000) Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur J Biochem 267:684–689. CrossRefPubMedGoogle Scholar
  21. 21.
    Tavazzi B, Amorini AM, Fazzina G, Di Pierro D, Tuttobene M, Giardina B, Lazzarino G (2001) Oxidative stress induces impairment of human erythrocyte energy metabolism through the oxygen radical-mediated direct activation of AMP-deaminase. J Biol Chem 276:48083–48092. CrossRefPubMedGoogle Scholar
  22. 22.
    Lazzarino G, Di Pierro D, Tavazzi B, Cerroni L, Giardina B (1991) Simultaneous separation of malondialdehyde, ascorbic acid and adenite nucleotide derivatives from biological samples by ion pairing high- performance liquid chromatography. Anal. Biochem. 19:191–196. CrossRefGoogle Scholar
  23. 23.
    Di Pierro D, Tavazzi B, Perno CP, Bartolini M, Balestra E, Calio R, Giardina B, Lazzarino G (1995) An ion pairing high performance liquid chromatography method for the simulateneous determination of Nucleotides, deoxynucleotides, nicotinic coenzymes, oxypurines, nucleosides and bases. Anal Biochem 231:407–412. CrossRefPubMedGoogle Scholar
  24. 24.
    Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14:303–331. CrossRefPubMedGoogle Scholar
  25. 25.
    Ciccoli L, De Felice C, Paccagnini E, Leoncini S, Pecorelli A, Signorini C, Belmonte G, Valacchi G, Rossi M, Hayek J (2012) Morphological changes and oxidative damage in Rett Syndrome erythrocytes. Biochim Biophys Acta. 1820:511–520. CrossRefPubMedGoogle Scholar
  26. 26.
    De Felice C, Signorini C, Leoncini S, Pecorelli A, Durand T, Valacchi G, Ciccoli L, Hayek J (2012) The role of oxidative stress in Rett syndrome: an overview. Ann N Y Acad Sci 1259:121–135. CrossRefPubMedGoogle Scholar
  27. 27.
    De Felice C, Della Ragione F, Signorini C, Leoncini S, Pecorelli A et al (2014) Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome. Neurobiol Dis 68:66–77. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188. CrossRefPubMedGoogle Scholar
  29. 29.
    Ciaccio C, Di Pierro D, Sbardella D, Tundo GR, Curatolo P, Galasso C et al (2017) Oxygen exchange and energy metabolism in erythrocytes of Rett syndrome and their relationships with respiratory alterations. Mol Cell Biochem 426:205–213. CrossRefPubMedGoogle Scholar
  30. 30.
    Sbardella D, Tundo GR, Campagnolo L, Valacchi G, Orlandi A, Curatolo P, Borsellino G, D’Esposito M, Ciaccio C, Cesare SD, Pierro DD, Galasso C, Santarone ME, Hayek J, Coletta M, Marini S (2017) Retention of mitochondria in mature human red blood cells as the result of autophagy impairment in rett syndrome. Sci Rep 7:12297. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey ME, Schanen NC, Zappella M, Renieri A, Huppke P, Percy AK (2010) Rett syndrome: recise diagnostic criteria and nomenclature. Ann. Neurol 68:944–950. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 7:4030–4034. CrossRefPubMedGoogle Scholar
  33. 33.
    Amorini AM, Lazzarino G, Galvano F, Fazzina G, Tavazzi B, Galvano G (2003) Cyanidin-3-O-β-glucopyranoside protects myocardium and erythrocytes from oxygen radical-mediated damages. Free Radic Res. 37:453–460. CrossRefPubMedGoogle Scholar
  34. 34.
    Littarru GP, Tiano L (2007) Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 37:31–37. CrossRefPubMedGoogle Scholar
  35. 35.
    Kalèn A, Norling B, Appelkvist EL, Dallner G (1987) Ubiquinone synthesis in the microsomal fraction of rat liver. Biochim Biophys Acta 926:70–78. CrossRefPubMedGoogle Scholar
  36. 36.
    Forsmark-Andrée P, Ernster L (1994) Evidence for a protective effect of endogenous ubiquinol against oxidative damage to mitochondrial protein and DNA during lipid peroxidation. Mol Aspects Med 15:73–81. CrossRefGoogle Scholar
  37. 37.
    Littarru GP, Battino M, Tomasetti M, Mordente A, Santini S, Oradei A, Manto A, Ghirlanda G (1994) Metabolic implications of coenzyme Q10 in red blood cells and plasma lipoproteins. Mol Aspects Med 15:67–72. CrossRefGoogle Scholar
  38. 38.
    Stocker R, Suarna C (1993) Extracellular reduction of ubiquinone-1 and -10 by human Hep G2 and blood cells. Biochim Biophys Acta 1158:15–22CrossRefGoogle Scholar
  39. 39.
    Garrido-Maraver J, Cordero MD, Oropesa-Avila M, Oropesa-Avila M, Vega AF, de la Mata M, Pavon AD, Alcocer-Gomez E, Calero CP, Paz MV et al (2014) Clinical applications of coenzyme Q10. Front Biosci 19:619–633CrossRefGoogle Scholar
  40. 40.
    Acosta MJ, Vazquez Fonseca L, Desbats MA, Cerqua C, Zordan R, Trevisson E, Salviati L (2016) Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta 1857:1079–1085. CrossRefPubMedGoogle Scholar
  41. 41.
    Niklowitz P, Sonnenschein A, Janetzky B, Andler W, Menke T (2007) Enrichment of coenzyme Q10 in plasma and blood cells: defense against oxidative damage. Int J Biol Sci 3:257–262. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Littarru GP, Tiano L (2007) Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 37:31–37. CrossRefPubMedGoogle Scholar
  43. 43.
    Niklowitz P, Menke T, Andler W, Okun JG (2004) Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: comparison of the antioxidant level in blood cells and their environment in healthy children and after oral supplementation in adults. Clin Chim Acta. 342:219–226. CrossRefPubMedGoogle Scholar
  44. 44.
    Niki E (2014) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 66:3–12. CrossRefPubMedGoogle Scholar
  45. 45.
    May JM, Qu ZC, Mendiratta S (1998) Protection and recycling of a-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch Biochem Biophys 349:281–289. CrossRefPubMedGoogle Scholar
  46. 46.
    Armutcu F, Coskun O, Gürel A, Sahin S, Kanter M, Cihan A, Numanoglu KV, Altinyazar C (2005) Vitamin E protects against acetone-induced oxidative stress in rat red blood cells. Cell Biol Toxicol 21:53–60. CrossRefPubMedGoogle Scholar
  47. 47.
    Tesoriere L, D’Arpa D, Butera D, Allegra M, Renda D, Maggio A, Bongiorno A, Livrea MA (2001) Oral supplements of vitamin E improve measures of oxidative stress in plasma and reduce oxidative damage to LDL and erythrocytes in beta-thalassemia intermedia patients. Free Radic Res 34:529–540. CrossRefPubMedGoogle Scholar
  48. 48.
    Vrolijk MF, Opperhuizen A, Jansen EH, Godschalk RW, Van Schooten FJ, Bast A, Haenen GR (2015) The shifting perception on antioxidants: the case of vitamin E and β-carotene. Redox Biol 4:272–478. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nakamura YK, Omaye ST (2009) Vitamin E-modulated gene expression associated with ROS generation. J Funct Foods 1:241–252. CrossRefGoogle Scholar
  50. 50.
    Rigotti A (2007) Absorption, transport, and tissue delivery of vitamin E. Mol Aspects Med 2:423–436. CrossRefGoogle Scholar
  51. 51.
    Saito Y, Fukuhara A, Nishio K, Hayakawa M, Ogawa Y, Sakamoto H, Fujii K, Yoshida Y, Niki E (2009) Characterization of cellular uptake and distribution of coenzyme Q10 and vitamin E in PC12 cells. J Nutr Biochem 20:350–357. CrossRefPubMedGoogle Scholar
  52. 52.
    Tu H, Li H, Wang Y, Niyyati M, Wang Y, Leshin J, Levine M (2015) Low red blood cell vitamin C concentrations induce red blood cell fragility: a link to diabetes via glucose, glucose transporters, and dehydroascorbic acid. EBioMedicine 2:1735–1750. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic. Biol Med. 51:1000–1013. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Johnston CS, Meyer CG, Srilakshmi JC (1993) Vitamin C elevates red blood cell glutathione in healthy adults. Am J Clin Nutr 58:103–105. CrossRefPubMedGoogle Scholar
  55. 55.
    Park EJ, Pezzuto JM (2015) The pharmacology of resveratrol in animals and humans. Biochim Biophys Acta 1852:1071–1113. CrossRefPubMedGoogle Scholar
  56. 56.
    Xia N, Forstermann U, Li H (2014) Resveratrol as a gene regulator in the vasculature. Curr Pharm Biotechnol 15:401–408. CrossRefPubMedGoogle Scholar
  57. 57.
    Pandey KB, Rizvi SI (2010) Protective effect of resveratrol on markers of oxidative stress in human erythrocytes subjected to in vitro oxidative insult. Phytother Res 24:11–14. CrossRefGoogle Scholar
  58. 58.
    Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1:35. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Jigisha A, Nishant R, Navin K, Pankaj G (2012) Green tea: a magical herb with miraculous outcomes. Int Res J Pharm 3:139–148Google Scholar
  60. 60.
    Farzaei MH, Bahramsoltani R, Abbasabadi Z, Braidy N, Nabavi SM (2019) Role of green tea catechins in prevention of age-related cognitive decline: pharmacological targets and clinical perspective. J Cell Physiol 234:2447–2459. CrossRefPubMedGoogle Scholar
  61. 61.
    Zaveri NT (2006) Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci 78:2073–2080. CrossRefPubMedGoogle Scholar
  62. 62.
    Saffari Y, Sadrzadeh SM (2004) Green tea metabolite EGCG protects membranes against oxidative damage in vitro. Life Sci 74:1513–1518. CrossRefPubMedGoogle Scholar
  63. 63.
    Kim HS, Quon MJ, Kim JA (2014) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2:187–195. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Bernatoniene J, Kopustinskiene DM (2018) The role of catechins in cellular responses to oxidative stress. Molecules 23(4):965. CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12:5592. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ciccoli L, De Felice C, Leoncini S, Signorini C, Cortelazzo A et al (2015) Red blood cells in Rett syndrome: oxidative stress, morphological changes and altered membrane organization. Biol Chem 396:1233–1240. CrossRefPubMedGoogle Scholar
  67. 67.
    Sierra C, Vilaseca MA, Brandi N, Artuch R, Mira A et al (2001) Oxidative stress in Rett syndrome. Brain Dev 23:S236–S239. CrossRefPubMedGoogle Scholar
  68. 68.
    Maffei S, De Felice C, Cannarile P, Leoncini S, Signorini C, Pecorelli A, Montomoli B, Lunghetti S, Ciccoli L, Durand T, Favilli R, Hayek J (2014) Effects of ω-3 PUFAs supplementation on myocardial function and oxidative stress markers in typical Rett syndrome. Mediat Inflamm. CrossRefGoogle Scholar
  69. 69.
    De Felice C, Signorini C, Durand T, Ciccoli L, Leoncini S, D’Esposito M, Filosa S, Oger C, Guy A, Bultel-Poncé V, Galano JM, Pecorelli A, De Felice L, Valacchi G, Hayek J (2012) Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr 7:447–458. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Mancuso M, Orsucci D, Calsolaro V, Choub A, Siciliano G (2009) Coenzyme Q10 and neurological diseases. Pharmaceuticals (Basel) 2(3):134–149. CrossRefGoogle Scholar
  71. 71.
    Gold WA, Williamson SL, Kaur S, Hargreaves IP, Land JM, Pelka GJ, Tam PP, Christodoulou J (2014) Mitochondrial dysfunction in the skeletal muscle of a mouse model of Rett syndrome (RTT): implications for the disease phenotype. Mitochondrion 15:10–17. CrossRefPubMedGoogle Scholar
  72. 72.
    Cervellati C, Sticozzi C, Romani A, Belmonte G, De Rasmo D, Signorile A, Cervellati F, Milanese C, Mastroberardino PG, Pecorelli A, Savelli V, Forman HJ, Hayek J (1852) Valacchi G (2015) Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage. Biochim Biophys Acta 10:2066–2074. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Donato Di Pierro
    • 1
  • Chiara Ciaccio
    • 1
  • Diego Sbardella
    • 1
  • Grazia Raffaella Tundo
    • 1
  • Roberta Bernardini
    • 2
  • Paolo Curatolo
    • 3
  • Cinzia Galasso
    • 3
  • Virginia Pironi
    • 3
  • Massimiliano Coletta
    • 1
  • Stefano Marini
    • 1
    Email author
  1. 1.Department of Clinical Sciences and Translational MedicineUniversity of Rome Tor VergataRomeItaly
  2. 2.Centro di Servizi Interdipartimentale - STA, University of Rome Tor VergataRomeItaly
  3. 3.Department of Systems Medicine, Division of Child Neurology and PsychiatryUniversity of Rome Tor VergataRomeItaly

Personalised recommendations