Advertisement

Molecular and Cellular Biochemistry

, Volume 462, Issue 1–2, pp 185–194 | Cite as

Silencing circular RNA circ_0010729 protects human cardiomyocytes from oxygen–glucose deprivation-induced injury by up-regulating microRNA-145-5p

  • Qifeng Jin
  • Yuanyuan ChenEmail author
Article
  • 83 Downloads

Abstract

Circular RNAs (circRNAs) are effector molecules that exert functions in cardiovascular diseases. Nevertheless, the effects of circRNAs on myocardial ischemia remain uninvestigated. This paper aimed to explore the functions of circ_0010729 in oxygen–glucose–deprivation (OGD)-caused injury of human cardiomyocytes (HCM). HCM were exposed to OGD environment for 4 h. Then the expression of circ_0010729 was evaluated by RT-qPCR. After transfection, cell viability, apoptosis, and migration were examined to evaluate the impact of overexpression and knockdown of circ_0010729 on OGD-induced cell injury. The regulation between circ_0010729 and microRNA-145-5p (miR-145-5p) was verified. After miR-145-5p inhibitor transfection, whether aberrant miR-145-5p expression affected the modulation of circ_0010729 in OGD-induced cell injury was measured. Western blot was utilized to analyze mTOR and MEK/ERK pathway-related proteins. OGD treatment enhanced circ_0010729 expression and evoked cell injury in HCM. Moreover, OGD-induced injury was aggrandized by circ_0010729 overexpression via suppressing cell growth and migration in HCM. Knockdown of circ_0010729 attenuated OGD-induced injury. In addition, circ_0010729 negatively regulated miR-145-5p expression. MiR-145-5p inhibition reversed the effects of silencing circ_0010729 on OGD-induced injury and mTOR and MEK/ERK pathways. We demonstrated that silencing circ_0010729 activated mTOR and MEK/ERK pathways by up-regulating miR-145-5p, thereby protecting HCM from OGD-induced injury.

Keywords

Oxygen–glucose deprivation circRNA_0010729 MicroRNA-145-5p Myocardial ischemia mTOR pathway MEK/ERK pathway 

Notes

Author contributions

Conceived and designed the experiments: Qifeng Jin, Yuanyuan Chen. Performed the experiments and analyzed the data: Qifeng Jin. Wrote the manuscript: Qifeng Jin, Yuanyuan Chen.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

All authors are informed and agree to publish.

References

  1. 1.
    Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Flaxman A, Murray CJ, Naghavi M (2014) The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation 129:1493–1501CrossRefGoogle Scholar
  2. 2.
    Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, Sparrow D, Vokonas P, Schwartz J (2010) Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology (Cambridge, Mass.) 21:819CrossRefGoogle Scholar
  3. 3.
    Varbo A, Benn M, Tybjærg-Hansen A, Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG (2013) Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol 61:427–436CrossRefGoogle Scholar
  4. 4.
    Roerecke M, Rehm J (2010) Irregular heavy drinking occasions and risk of ischemic heart disease: a systematic review and meta-analysis. Am J Epidemiol 171:633–644.  https://doi.org/10.1093/aje/kwp451 CrossRefPubMedGoogle Scholar
  5. 5.
    Thomsen M, Nordestgaard BG (2014) Myocardial infarction and ischemic heart disease in overweight and obesity with and without metabolic syndrome. JAMA Intern Med 174:15–22CrossRefGoogle Scholar
  6. 6.
    Steg PG, Greenlaw N, Tendera M, Tardif J-C, Ferrari R, Al-Zaibag M, Dorian P, Hu D, Shalnova S, Sokn FJ (2014) Prevalence of anginal symptoms and myocardial ischemia and their effect on clinical outcomes in outpatients with stable coronary artery disease: data from the International Observational CLARIFY Registry. JAMA Intern Med 174:1651–1659CrossRefGoogle Scholar
  7. 7.
    Marzilli M, Merz CNB, Boden WE, Bonow RO, Capozza PG, Chilian WM, DeMaria AN, Guarini G, Huqi A, Morrone D, Patel MR, Weintraub WS (2012) Obstructive coronary atherosclerosis and ischemic heart disease: an elusive link! J Am Coll Cardiol 60:951–956.  https://doi.org/10.1016/j.jacc.2012.02.082 CrossRefPubMedGoogle Scholar
  8. 8.
    Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211.  https://doi.org/10.1038/nrm.2015.32 CrossRefPubMedGoogle Scholar
  9. 9.
    Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, Xiong F, Xiang B, Zhou M, Liao Q, Zhang W, Li X, Li X, Li Y, Li G, Zeng Z, Xiong W (2017) Circular RNAs in human cancer. Mol Cancer 16:25.  https://doi.org/10.1186/s12943-017-0598-7 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fan X, Weng X, Zhao Y, Chen W, Gan T, Xu D (2017) Circular RNAs in cardiovascular disease: an overview. Biomed Res Int 2017:5135781PubMedPubMedCentralGoogle Scholar
  11. 11.
    Geng H-H, Li R, Su Y-M, Xiao J, Pan M, Cai X-X, Ji X-P (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS ONE 11:e0151753CrossRefGoogle Scholar
  12. 12.
    Zhou B, Yu J-W (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochem Biophys Res Commun 487:769–775CrossRefGoogle Scholar
  13. 13.
    Zhou L-Y, Zhai M, Huang Y, Xu S, An T, Wang Y-H, Zhang R-C, Liu C-Y, Dong Y-H, Wang M (2018) The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ 26(7):1299CrossRefGoogle Scholar
  14. 14.
    Dang RY, Liu FL, Li Y (2017) Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1alpha axis. Biochem Biophys Res Commun 490:104–110.  https://doi.org/10.1016/j.bbrc.2017.05.164 CrossRefPubMedGoogle Scholar
  15. 15.
    Adnan M, Morton G, Hadi S (2011) Analysis of rpoS and bolA gene expression under various stress-induced environments in planktonic and biofilm phase using 2 − ΔΔCT method. Mol Cell Biochem 357:275–282CrossRefGoogle Scholar
  16. 16.
    Kong QR, Ji DM, Li FR, Sun HY, Wang QX (2019) MicroRNA-221 promotes myocardial apoptosis caused by myocardial ischemia-reperfusion by down-regulating PTEN. Eur Rev Med Pharmacol Sci 23:3967–3975.  https://doi.org/10.26355/eurrev_201905_17826 CrossRefPubMedGoogle Scholar
  17. 17.
    Yuan M, Zhang L, You F, Zhou J, Ma Y, Yang F, Tao L (2017) MiR-145-5p regulates hypoxia-induced inflammatory response and apoptosis in cardiomyocytes by targeting CD40. Mol Cell Biochem 431:123–131.  https://doi.org/10.1007/s11010-017-2982-4 CrossRefPubMedGoogle Scholar
  18. 18.
    Nabel EG, Braunwald E (2012) A tale of coronary artery disease and myocardial infarction. N Engl J Med 366:54–63CrossRefGoogle Scholar
  19. 19.
    Xu F, Yu H, Liu J, Cheng L (2014) Pyrroloquinoline quinone inhibits oxygen/glucose deprivation-induced apoptosis by activating the PI3 K/AKT pathway in cardiomyocytes. Mol Cell Biochem 386:107–115.  https://doi.org/10.1007/s11010-013-1849-6 CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang Z, Li H, Chen S, Li Y, Cui Z, Ma J (2017) Knockdown of microRNA-122 protects H9c2 cardiomyocytes from hypoxia-induced apoptosis and promotes autophagy. Med Sci Monit 23:4284CrossRefGoogle Scholar
  21. 21.
    Li M, Ding W, Tariq MA, Chang W, Zhang X, Xu W, Hou L, Wang Y, Wang J (2018) A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics 8:5855–5869.  https://doi.org/10.7150/thno.27285 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhou LY, Zhai M, Huang Y, Xu S, An T, Wang YH, Zhang RC, Liu CY, Dong YH, Wang M, Qian LL, Ponnusamy M, Zhang YH, Zhang J, Wang K (2019) The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ 26:1299–1315.  https://doi.org/10.1038/s41418-018-0206-4 CrossRefPubMedGoogle Scholar
  23. 23.
    Kulcheski FR, Christoff AP, Margis R (2016) Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 238:42–51.  https://doi.org/10.1016/j.jbiotec.2016.09.011 CrossRefPubMedGoogle Scholar
  24. 24.
    Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97.  https://doi.org/10.1093/nar/gkt1248 CrossRefPubMedGoogle Scholar
  25. 25.
    Wu Z, Zhao S, Li C, Liu C (2018) LncRNA TUG1 serves an important role in hypoxia-induced myocardial cell injury by regulating the miR-145-5p-Binp3 axis. Mol Med Rep 17:2422–2430PubMedGoogle Scholar
  26. 26.
    Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976.  https://doi.org/10.1016/j.cell.2017.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293CrossRefGoogle Scholar
  28. 28.
    Wang Z-G, Wang Y, Huang Y, Lu Q, Zheng L, Hu D, Feng W-K, Liu Y-L, Ji K-T, Zhang H-Y, Fu X-B, Li X-K, Chu M-P, Xiao J (2015) bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3 K/Akt/mTOR pathway. Sci Rep 5:9287.  https://doi.org/10.1038/srep09287 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhang J, Wang C, Yu S, Luo Z, Chen Y, Liu Q, Hua F, Xu G, Yu P (2014) Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3 K/AKT/mTOR signaling. Sci Rep 4:7317.  https://doi.org/10.1038/srep07317 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cui H, Li X, Li N, Qi K, Li Q, Jin C, Zhang Q, Jiang L, Yang Y (2014) Induction of autophagy by tongxinluo through the MEK/ERK pathway protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury. J Cardiovasc Pharmacol 64:180–190.  https://doi.org/10.1097/fjc.0000000000000104 CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Z, Li S, Cui M, Gao X, Sun D, Qin X, Narsinh K, Li C, Jia H, Li C, Han Y, Wang H, Cao F (2013) Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3 K/Akt and MEK/ERK pathways. Basic Res Cardiol 108:333.  https://doi.org/10.1007/s00395-013-0333-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cardiology IAffiliated Hospital of Jining Medical UniversityJiningChina
  2. 2.Department of Cardiology VAffiliated Hospital of Jining Medical UniversityJiningChina

Personalised recommendations