Molecular and Cellular Biochemistry

, Volume 462, Issue 1–2, pp 167–172 | Cite as

MicroRNA signature of human blood mononuclear cells

  • Qiuwang Zhang
  • Anthony Cannavicci
  • Si-Cheng Dai
  • Chenxi Wang
  • Michael J. B. KutrykEmail author


MicroRNAs (miRNAs) regulate a wide range of cellular processes and functions. Blood mononuclear cells (BMNCs) participate in the immune response, inflammatory reaction and angiogenesis. In 2010, a total of 157 miRNAs were quantified by RT-qPCR and a miRNA signature was determined for human peripheral BMNCs. With the advent of technologies such as RNA sequencing, many new miRNAs have been identified. This study was designed to provide an up-to-date miRNA signature for human BMNCs. Peripheral BMNCs were isolated by Ficoll density gradient centrifugation. Using the qPCR array assay, we identified 108 highly expressed miRNAs (Ct value < 30) in human BMNCs. Further validation of the array results by quantifying select miRNAs with RT-qPCR revealed a strong correlation between Ct values derived from array analysis and RT-qPCR, suggesting the array results presented in this study are accurate and reliable. Of note, the function of the majority of the highly expressed miRNAs we have identified has not yet been studied. Our findings may help direct further studies of the regulatory roles of miRNAs in BMNC function.


MicroRNA Blood mononuclear cell Microarray analysis RT-qPCR 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14CrossRefGoogle Scholar
  2. 2.
    Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110CrossRefGoogle Scholar
  3. 3.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefGoogle Scholar
  4. 4.
    Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862CrossRefGoogle Scholar
  5. 5.
    Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y et al (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158:607–619CrossRefGoogle Scholar
  6. 6.
    Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5’-UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471CrossRefGoogle Scholar
  7. 7.
    Vasudevan S (2012) Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 3(3):311–330CrossRefGoogle Scholar
  8. 8.
    Hayder H, O’Brien J, Nadeem U, Peng C (2018) MicroRNAs: crucial regulators of placental development. Reproduction 155:R259–R271CrossRefGoogle Scholar
  9. 9.
    Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y et al (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158:607–619CrossRefGoogle Scholar
  10. 10.
    Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524CrossRefGoogle Scholar
  11. 11.
    Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M et al (2018) Interplay between miRNAs and human diseases. J Cell Physiol 233:2007–2018CrossRefGoogle Scholar
  12. 12.
    Tufekci KU, Oner MG, Meuwissen RL, Genc S (2014) The role of microRNAs in human diseases. Methods Mol Biol 1107:33–50CrossRefGoogle Scholar
  13. 13.
    Shu J, Silva B, Gao T, Xu Z, Cui J (2017) Dynamic and modularized microRNA regulation and its implication in human cancers. Sci Rep. 7:13356CrossRefGoogle Scholar
  14. 14.
    Hoekstra M, van der Lans CA, Halvorsen B, Gullestad L, Kuiper J, Aukrust P et al (2010) The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun 394(3):792–797CrossRefGoogle Scholar
  15. 15.
    Bam M, Yang X, Sen S, Zumbrun EE, Dennis L, Zhang J et al (2018) Characterization of dysregulated miRNA in peripheral blood mononuclear cells from ischemic stroke patients. Mol Neurobiol 55:1419–1429CrossRefGoogle Scholar
  16. 16.
    Ma J, Lin Y, Zhan M, Mann DL, Stass SA, Jiang F (2015) Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer. Lab Investig 95:1197–1206CrossRefGoogle Scholar
  17. 17.
    Papageorgiou SG, Kontos CK, Tsiakanikas P, Stavroulaki G, Bouchla A, Vasilatou D et al (2018) Elevated miR-20b-5p expression in peripheral blood mononuclear cells: a novel, independent molecular biomarker of favorable prognosis in chronic lymphocytic leukemia. Leuk Res 70:1–7CrossRefGoogle Scholar
  18. 18.
    Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthr Res Ther. 10:R101CrossRefGoogle Scholar
  19. 19.
    Ding W, Xin J, Jiang L, Zhou Q, Wu T, Shi D et al (2015) Characterisation of peripheral blood mononuclear cell microRNA in hepatitis B-related acute-on-chronic liver failure. Sci Rep 5:13098CrossRefGoogle Scholar
  20. 20.
    Goswami RS, Waldron L, Machado J, Cervigne NK, Xu W, Reis PP et al (2010) Optimization and analysis of a quantitative real-time PCR-based technique to determine microRNA expression in formalin-fixed paraffin-embedded samples. BMC Biotechnol 10:47CrossRefGoogle Scholar
  21. 21.
    Camarillo C, Swerdel M, Hart RP (2011) Comparison of microarray and quantitative real-time PCR methods for measuring MicroRNA levels in MSC cultures. Methods Mol Biol 698:419–429CrossRefGoogle Scholar
  22. 22.
    Chen Y, Gelfond JA, McManus LM, Shireman PK (2009) Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genom 10:407CrossRefGoogle Scholar
  23. 23.
    Ward MR, Thompson KA, Isaac K, Vecchiarelli J, Zhang Q, Stewart DJ et al (2011) Nitric oxide synthase gene transfer restores activity of circulating angiogenic cells from patients with coronary artery disease. Mol Ther 19:1323–1330CrossRefGoogle Scholar
  24. 24.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al (2005) MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949CrossRefGoogle Scholar
  25. 25.
    Nahid MA, Satoh M, Chan EK (2011) Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol 186:1723–1734CrossRefGoogle Scholar
  26. 26.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael’s HospitalUniversity of TorontoTorontoCanada
  2. 2.Institute of Medical ScienceUniversity of TorontoTorontoCanada
  3. 3.Department of Cardiovascular Surgery, Renji HospitalShanghai Jiaotong UniversityShanghaiChina
  4. 4.St. Michael’s HospitalTorontoCanada

Personalised recommendations