Advertisement

Molecular and Cellular Biochemistry

, Volume 462, Issue 1–2, pp 133–155 | Cite as

Melatonin and its ubiquitous anticancer effects

  • Sankha Bhattacharya
  • Krishna Kumar Patel
  • Deepa Dehari
  • Ashish Kumar Agrawal
  • Sanjay SinghEmail author
Article

Abstract

Melatonin (N-acetyl-5-methoxy-tryptamine), which is generally considered as pleiotropic and multitasking molecule, secretes from pineal gland at night under normal light or dark conditions. Apart from circadian regulations, Melatonin also has antioxidant, anti-ageing, immunomodulation and anticancer properties. From the epidemiological research, it was postulated that Melatonin has significant apoptotic, angiogenic, oncostatic and anti-proliferative effects on various oncological cells. In this review, the underlying anticancer mechanisms of Melatonin such as stimulation of apoptosis, Melatonin receptors (MT1 and MT2) stimulation, paro-survival signal regulation, the hindering of angiogenesis, epigenetic alteration and metastasis have been discussed with recent findings. The Melatonin utilization as an adjuvant with chemotherapeutic drugs for the reinforcement of therapeutic effects was also discussed. This review precisely emphasizes the anticancer effect of Melatonin on various cancer cells. This review exemplifies the epidemiology and anticancer efficiency of Melatonin with prior attention to the mechanisms of actions.

Keywords

Melatonin Non-small-cell lung cancer Apoptosis Angiogenesis APUD system 

Abbreviations

13-HODE

13-Hydroxy octadecadienoic acid

AANAT

Arylalkiamin N-acetyltransferase

ACS

American Cancer Society

AGS

Aicardi–Goutières syndrome

aMT6s

6-Sulphatoxymelatonin

AKt

Protein kinase B

APUD

Amine precursor uptake and decarboxylation system

AR

Androgen receptor

CAMKIIα

Calcium/calmodulin-dependent protein kinase type II alpha chain

cAMP

Cyclic adenosine monophosphate

CCl3O2

Trichloromethylperoxyl

CDK1

Cyclin-dependent kinase 1

CDK4

Cyclin-dependent kinase 4

COX-2

Cyclooxygenase-2

DNES

The diffusive neuro-endocrine system

E2-ER

Estradiol

EGFR

Epidermal growth factor

ERE

Estrogen response element

ERα

Estrogenic receptor

ERα

Estrogenic receptor

ERK

Extracellular signal-regulated kinase

GC

Gastric cancer

GCSLC

Glioblastoma cancer stem-like cells

GHFs

Growth hormone-dependent growth factors

HDAC4

Histone deacetylase 4

HGF

Hepatocyte growth factor

HOCl.

Hypochlorous acid

hTERT

Telomerase reverse transcriptase

IGBBP-3

Insulin-like growth factor-binding protein 3

IGF1

Insulin-like growth factor 1

IGF-1

Like growth factor-1

IUPHAR

Union of Basic and Clinical Pharmacology

JNK

c-Jun N-terminal kinase

LAN

Light at night

MAPKs

Microtubule-associated protein kinase

MFC

Murine for gastric carcinoma

MLT

Melatonin

MTNR1a

Melatonin receptor 1a

MTNR1B

Melatonin receptor 1B variant B

MTNR1b

Melatonin receptor 1b

NF-kB

Nuclear factor kappa-light-chain-enhancer of activated B cells

NSCLC

Non-small-cell lung cancer

OC

Ovarian cancer

OPG

Osteoprotegerin

p27 (Kip1)

Cyclin-dependent kinase inhibitor

PCa

Prostate cancer cells

PDGF

Platelet derived growth factors

PrPc

Prion protein

PSQI

Pittsburgh sleep quality index

QR2

Quinone reductase 2

RNS

Reactive nitrogen species

ROR

Related orphan receptor

ROS

Reactive oxygen species

RZR/RORα

Retinoic acid-related orphan nuclear hormone receptor

SCN

Suprachiasmatic nucleus region

SRB

Sulforhodamine B A

TGF

Transforming Growth factor

TNF-α

Tumour necrosis factor alpha

VDR

Vitamin D receptor

VEGF

Vascular endothelial growth factor

WHO

World Health Organization

Notes

Acknowledgements

The authors would like to acknowledge the extensive moral support given by the students and the faculty members of Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) while compiling this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Becker-André M, Wiesenberg I, Schaeren-Wiemers N, André E, Missbach M, Saurat JH, Carlberg C (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 269:28531–28534PubMedGoogle Scholar
  2. 2.
    Lapin V, Ebels I (1976) Effects of some low molecular weight sheep pineal fractions and melatonin on different tumors in rats and mice. Oncology 33:110–113.  https://doi.org/10.1159/000225117 PubMedCrossRefGoogle Scholar
  3. 3.
    Iyengar B (2013) The melanocyte photosensory system in the human skin. SpringerPlus 2:158.  https://doi.org/10.1186/2193-1801-2-158 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sensi S, Pace Palitti V, Guagnano MT (1993) Chronobiology in endocrinology. Ann Ist Super Sanita 29:613–631PubMedGoogle Scholar
  5. 5.
    Zisapel N (2018) New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol 175:3190–3199.  https://doi.org/10.1111/bph.14116 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Paulose JK, Wright JM, Patel AG, Cassone VM (2016) Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS ONE 11:e0146643.  https://doi.org/10.1371/journal.pone.0146643 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74:246–260.  https://doi.org/10.1016/j.neuron.2012.04.006 PubMedCrossRefGoogle Scholar
  8. 8.
    Claustrat B (2014) Melatonin: an introduction to its physiological and pharmacological effects in humans. Springer, Berlin, pp 205–219Google Scholar
  9. 9.
    Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, Madrid JA (2014) Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci 15:23448–23500.  https://doi.org/10.3390/ijms151223448 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Menéndez-Menéndez J, Martínez-Campa C (2018) Melatonin: an anti-tumor agent in hormone-dependent cancers. Int J Endocrinol 2018:3271948.  https://doi.org/10.1155/2018/3271948 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Latest Global Cancer Data (2018) Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. WHO 12 September 2018, 16h00 pm Geneva time pp 1–3Google Scholar
  12. 12.
    Sainz RM, Mayo JC, Tan D-x, León J, Manchester L, Reiter RJ (2005) Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate 63:29–43.  https://doi.org/10.1002/pros.20155 PubMedCrossRefGoogle Scholar
  13. 13.
    Martínez-Campa C, Alonso-González C, Mediavilla MD, Cos S, González A, Ramos S, Sánchez-Barceló EJ (2006) Melatonin inhibits both ERα activation and breast cancer cell proliferation induced by a metalloestrogen, cadmium. J Pineal Res 40:291–296.  https://doi.org/10.1111/j.1600-079X.2006.00315.x PubMedCrossRefGoogle Scholar
  14. 14.
    Reiter RJ, Tan D-X, Tamura H, Cruz MHC, Fuentes-Broto L (2014) Clinical relevance of melatonin in ovarian and placental physiology: a review. Gynecol Endocrinol 30:83–89.  https://doi.org/10.3109/09513590.2013.849238 PubMedCrossRefGoogle Scholar
  15. 15.
    Tan D-X, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2006) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42.  https://doi.org/10.1111/j.1600-079X.2006.00407.x CrossRefGoogle Scholar
  16. 16.
    Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol.  https://doi.org/10.3389/fendo.2019.00249 CrossRefGoogle Scholar
  17. 17.
    Ianas O, Olnescu R, Badescu I (1991) Melatonin involvement in oxidative stress. Rom J Endocrinol 1:147–153Google Scholar
  18. 18.
    Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1:57–60Google Scholar
  19. 19.
    Tan DX, Poeggeler B, Reiter RJ, Chen LD, Chen S, Manchester LC, BarlowWalden LR (1993) The pineal hormone melatonin inhibits DNA adduct formationinduced by chemical carcinogen safrole in vivo. Cancer Lett 70:65–71PubMedCrossRefGoogle Scholar
  20. 20.
    Marshall KA, Reiter RJ, Poeggeler B, Aruoma OI, Halliwell B (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Radic Med 21:307–315CrossRefGoogle Scholar
  21. 21.
    Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9PubMedCrossRefGoogle Scholar
  22. 22.
    Maharaj DS, Glass BD, Daya S (2007) Melatonin: new places in therapy. Biosci Rep 27:299–320.  https://doi.org/10.1007/s10540-007-9052-1 PubMedCrossRefGoogle Scholar
  23. 23.
    Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332:1004–1014.  https://doi.org/10.1056/NEJM199504133321507 PubMedCrossRefGoogle Scholar
  24. 24.
    Shellard SA, Whelan RD, Hill BT (1989) Growth inhibitory and cytotoxic effects of melatonin and its metabolites on human tumour cell lines in vitro. Br J Cancer 60:288–290PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Di Bella G, Mascia F, Gualano L, Di Bella L (2013) Melatonin anticancer effects: review. Int J Mol Sci 14:2410PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Srivastava RK (2001) TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 3:535–546.  https://doi.org/10.1038/sj/neo/7900203 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J (2010) International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 62:343–380.  https://doi.org/10.1124/pr.110.002832 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chang J, Jiang L, Wang Y, Yao B, Yang S, Zhang B, Zhang M-Z (2014) 12/15 Lipoxygenase regulation of colorectal tumorigenesis is determined by the relative tumor levels of its metabolite 12-HETE and 13-HODE in animal models. Oncotarget 6:2879–2888.  https://doi.org/10.18632/oncotarget.2994 PubMedCentralCrossRefGoogle Scholar
  29. 29.
    Blask DE, Sauer LA, Dauchy RT, Holowachuk EW, Ruhoff MS, Kopff HS (1999) Melatonin inhibition of cancer growth in vivo involves suppression of tumor fatty acid metabolism via melatonin receptor-mediated signal transduction events. Can Res 59:4693Google Scholar
  30. 30.
    Thomson PA, Wray NR, Thomson AM, Dunbar DR, Grassie MA, Condie A, Walker MT, Smith DJ, Pulford DJ, Muir W, Blackwood DHR, Porteous DJ (2004) Sex-specific association between bipolar affective disorder in women and GPR50, an X-linked orphan G protein-coupled receptor. Mol Psychiatry 10:470.  https://doi.org/10.1038/sj.mp.4001593 CrossRefGoogle Scholar
  31. 31.
    Karunanithi D, Radhakrishna A, Sivaraman KP, Biju VMN (2014) Quantitative determination of melatonin in milk by LC-MS/MS. J Food Sci Technol 51:805–812.  https://doi.org/10.1007/s13197-013-1221-6 PubMedCrossRefGoogle Scholar
  32. 32.
    Mediavilla MD, Sanchez-Barcelo EJ, Tan DX, Manchester L, Reiter RJ (2010) Basic mechanisms involved in the anti-cancer effects of melatonin. Curr Med Chem 17:4462–4481PubMedCrossRefGoogle Scholar
  33. 33.
    Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A (2016) A review of melatonin, its receptors and drugs. Eurasian J Med 48:135–141.  https://doi.org/10.5152/eurasianjmed.2015.0267 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wu Y-H, Swaab DF (2007) Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer’s disease. Sleep Med 8:623–636.  https://doi.org/10.1016/j.sleep.2006.11.010 PubMedCrossRefGoogle Scholar
  35. 35.
    Hardeland R, Pandi-Perumal SR (2005) Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab 2:22.  https://doi.org/10.1186/1743-7075-2-22 CrossRefGoogle Scholar
  36. 36.
    Cook DN, Kang HS, Jetten AM (2015) Retinoic acid-related orphan receptors (RORs): regulatory functions in immunity, development, circadian rhythm, and metabolism. Nucl Recept Res 2:101185.  https://doi.org/10.11131/2015/101185 CrossRefGoogle Scholar
  37. 37.
    Galano A, Tan D-X, Reiter R (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54:245–257PubMedCrossRefGoogle Scholar
  38. 38.
    Lopes J, Arnosti D, Trosko JE, Tai M-H, Zuccari D (2016) Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells. Genes Cancer 7:209–217.  https://doi.org/10.18632/genesandcancer.107 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Martínez-Campa C, González A, Mediavilla MD, Alonso-González C, Alvarez-García V, Sánchez-Barceló EJ, Cos S (2009) Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer 101:1613.  https://doi.org/10.1038/sj.bjc.6605336 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Leon-Blanco MM, Guerrero JM, Reiter RJ, Calvo JR, Pozo D (2003) Melatonin inhibits telomerase activity in the MCF-7 tumor cell line both in vivo and in vitro. J Pineal Res 35:204–211PubMedCrossRefGoogle Scholar
  41. 41.
    Guerrero JM, Reiter RJ (2002) Melatonin-immune system relationships. Curr Top Med Chem 2:167–179.  https://doi.org/10.2174/1568026023394335 PubMedCrossRefGoogle Scholar
  42. 42.
    Carrillo-Vico A, Lardone PJ, Alvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int J Mol Sci 14:8638–8683.  https://doi.org/10.3390/ijms14048638 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Campbell FC, Xu H, El-Tanani M, Crowe P, Bingham V (2010) The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: operational networks and tissue-specific growth control. Biochem Pharmacol 79:1–9.  https://doi.org/10.1016/j.bcp.2009.09.005 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mediavilla MD, Cos S, Sanchez-Barcelo EJ (1999) Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro. Life Sci 65:415–420PubMedCrossRefGoogle Scholar
  45. 45.
    Lv D, Cui P-L, Yao S-W, Xu Y-Q, Yang Z-X (2012) Melatonin inhibits the expression of vascular endothelial growth factor in pancreatic cancer cells. Chin J Cancer Res 24:310–316.  https://doi.org/10.3978/j.issn.1000-9604.2012.09.03 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cutando A, Aneiros-Fernández J, López-Valverde A, Arias-Santiago S, Aneiros-Cachaza J, Reiter RJ (2011) A new perspective in oral health: potential importance and actions of melatonin receptors MT1, MT2, MT3, and RZR/ROR in the oral cavity. Arch Oral Biol 56:944–950.  https://doi.org/10.1016/j.archoralbio.2011.03.004 PubMedCrossRefGoogle Scholar
  47. 47.
    Casimiro MC, Crosariol M, Loro E, Li Z, Pestell RG (2012) Cyclins and cell cycle control in cancer and disease. Genes Cancer 3:649–657.  https://doi.org/10.1177/1947601913479022 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Boyd CA (2001) Amine uptake and peptide hormone secretion: aPUD cells in a new landscape. J Physiol 531:581.  https://doi.org/10.1111/j.1469-7793.2001.0581h.x PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kvetnoĭ IM, Raĭkhlin NT (1978) Clinical pathology of the APUD system (apudopathy). Klin Med 56:11Google Scholar
  50. 50.
    Yang WS, Deng Q, Fan WY, Wang WY, Wang X (2014) Light exposure at night, sleep duration, melatonin, and breast cancer: a dose-response analysis of observational studies. Eur J Cancer Prev 23:269–276.  https://doi.org/10.1097/cej.0000000000000030 PubMedCrossRefGoogle Scholar
  51. 51.
    Abd Nadia A, El Moneim HEM, Sorial Mina Mamdouh, Hewala Taha I, Embaby Amira, Sheweita Salah (2015) A molecular case-control study on the Association of Melatonin Hormone and rs#10830963 Single nucleotide polymorphism in its receptor MTNR1B gene with breast cancer. Middle East J Cancer 6:11–20Google Scholar
  52. 52.
    Cardinali D, Escames G, Acuña-Castroviejo D, Ortiz Garcia F, Fernandez-Gil B, Guerra-Librero Rite A, García S, Shen Y-Q, Florido J (2016) Melatonin-induced oncostasis, mechanisms and clinical relevance. J Integr Oncol.  https://doi.org/10.4172/2329-6771.S1-006 CrossRefGoogle Scholar
  53. 53.
    Basler M, Jetter A, Fink D, Seifert B, Kullak-Ublick GA, Trojan A (2014) Urinary excretion of melatonin and association with breast cancer: meta-analysis and review of the literature. Breast care (Basel, Switzerland) 9:182–187.  https://doi.org/10.1159/000363426 CrossRefGoogle Scholar
  54. 54.
    Tam CW, Shiu SY (2011) Functional interplay between melatonin receptor-mediated antiproliferative signaling and androgen receptor signaling in human prostate epithelial cells: potential implications for therapeutic strategies against prostate cancer. J Pineal Res 51:297–312.  https://doi.org/10.1111/j.1600-079X.2011.00890.x PubMedCrossRefGoogle Scholar
  55. 55.
    Shiu SYW, Law IC, Lau KW, Tam PC, Yip AWC, Ng WT (2003) Melatonin slowed the early biochemical progression of hormone-refractory prostate cancer in a patient whose prostate tumor tissue expressed MT1 receptor subtype. J Pineal Res 35:177–182.  https://doi.org/10.1034/j.1600-079X.2003.00074.x PubMedCrossRefGoogle Scholar
  56. 56.
    Shiu SY, Leung WY, Tam CW, Liu VW, Yao KM (2013) Melatonin MT1 receptor-induced transcriptional up-regulation of p27(Kip1) in prostate cancer antiproliferation is mediated via inhibition of constitutively active nuclear factor kappa B (NF-kappaB): potential implications on prostate cancer chemoprevention and therapy. J Pineal Res 54:69–79.  https://doi.org/10.1111/j.1600-079X.2012.01026.x PubMedCrossRefGoogle Scholar
  57. 57.
    Sigurdardottir LG, Markt SC, Rider JR, Haneuse S, Fall K, Schernhammer ES, Tamimi RM, Flynn-Evans E, Batista JL, Launer L, Harris T, Aspelund T, Stampfer MJ, Gudnason V, Czeisler CA, Lockley SW, Valdimarsdottir UA, Mucci LA (2015) Urinary melatonin levels, sleep disruption, and risk of prostate cancer in elderly men. Eur Urol 67:191–194.  https://doi.org/10.1016/j.eururo.2014.07.008 PubMedCrossRefGoogle Scholar
  58. 58.
    Tai S-Y, Huang S-P, Bao B-Y, Wu M-T (2016) Urinary melatonin-sulfate/cortisol ratio and the presence of prostate cancer: a case-control study. Sci Rep 6:29606.  https://doi.org/10.1038/srep29606 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Calastretti A, Gatti G, Lucini V, Dugnani S, Canti G, Scaglione F, Bevilacqua A (2018) Melatonin analogue antiproliferative and cytotoxic effects on human prostate cancer Cells. Int J Mol Sci 19:1505.  https://doi.org/10.3390/ijms19051505 PubMedCentralCrossRefGoogle Scholar
  60. 60.
    Jabłońska K, Pula B, Zemla A, Kobierzycki C, Kedzia W, Nowak-Markwitz E, Spaczynski M, Zabel M, Podhorska-Okolow M, Dziegiel P (2014) Expression of the MT1 melatonin receptor in ovarian cancer cells. Int J mol Sci 15:23074–23089PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Shen C-J, Chang C-C, Chen Y-T, Lai C-S, Hsu Y-C (2016) Melatonin suppresses the growth of ovarian cancer cell lines (OVCAR-429 and PA-1) and potentiates the effect of G1 arrest by targeting CDKs. Int J Mol Sci 17:176PubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zemła A, Grzegorek I, Dzięgiel P, Jabłońska K (2017) Melatonin synergizes the chemotherapeutic effect of cisplatin in ovarian cancer cells independently of MT1 melatonin receptors. In Vivo (Athens, Greece) 31:801–809.  https://doi.org/10.21873/invivo.11133 CrossRefGoogle Scholar
  63. 63.
    Lee H, Jung JH, Lee HJ, Jeong MS, Jung D-B, Kwon HY, Kim S-H (2015) Abstract 94: melatonin inhibits stemness of glioblastoma cancer stem-like cells via regulation of histone methylation. Can Res 75:94.  https://doi.org/10.1158/1538-7445.am2015-94 CrossRefGoogle Scholar
  64. 64.
    Zheng X, Pang B, Gu G, Gao T, Zhang R, Pang Q, Liu Q (2017) Melatonin inhibits glioblastoma stem-like cells through suppression of EZH2-NOTCH1 signaling axis. Int J Biol Sci 13:245–253.  https://doi.org/10.7150/ijbs.16818 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hong Y, Won J, Lee Y, Lee S, Park K, Chang K-T, Hong Y (2014) Melatonin treatment induces interplay of apoptosis, autophagy, and senescence in human colorectal cancer cells. J Pineal Res 56:264–274.  https://doi.org/10.1111/jpi.12119 PubMedCrossRefGoogle Scholar
  66. 66.
    Wei J-Y, Li W-M, Zhou L-L, Lu Q-N, He W (2015) Melatonin induces apoptosis of colorectal cancer cells through HDAC4 nuclear import mediated by CaMKII inactivation. J Pineal Res 58:429–438.  https://doi.org/10.1111/jpi.12226 PubMedCrossRefGoogle Scholar
  67. 67.
    Lee JH, Yoon YM, Han YS, Yun CW, Lee SH (2018) Melatonin promotes apoptosis of oxaliplatin-resistant colorectal cancer cells through inhibition of cellular prion protein. Anticancer Res 38:1993–2000.  https://doi.org/10.21873/anticanres.12437 PubMedCrossRefGoogle Scholar
  68. 68.
    Meng X, Li Y, Li S, Zhou Y, Gan R-Y, Xu D-P, Li H-B (2017) Dietary sources and bioactivities of melatonin. Nutrients 9(4):367PubMedCentralCrossRefGoogle Scholar
  69. 69.
    American Cancer Society (2018) Cancer facts & figures 2018. American Cancer Society, New YorkGoogle Scholar
  70. 70.
    Li Y, Li S, Zhou Y, Meng X, Zhang J-J, Xu D-P, Li H-B (2017) Melatonin for the prevention and treatment of cancer. Oncotarget 8:39896–39921.  https://doi.org/10.18632/oncotarget.16379 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Yun M, Kim EO, Lee D, Kim JH, Kim J, Lee H, Lee J, Kim SH (2014) Melatonin sensitizes H1975 non-small-cell lung cancer cells harboring a T790 M-targeted epidermal growth factor receptor mutation to the tyrosine kinase inhibitor gefitinib. Cell Physiol Biochem 34:865–872.  https://doi.org/10.1159/000366305 PubMedCrossRefGoogle Scholar
  72. 72.
    Lu J-J, Fu L, Tang Z, Zhang C, Qin L, Wang J, Yu Z, Shi D, Xiao X, Xie F, Huang W, Deng W (2015) Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget 7:2985–3001.  https://doi.org/10.18632/oncotarget.6407 PubMedCentralCrossRefGoogle Scholar
  73. 73.
    Vanecek J (1998) Cellular mechanisms of melatonin action. Physiol Rev 78:687–721.  https://doi.org/10.1152/physrev.1998.78.3.687 PubMedCrossRefGoogle Scholar
  74. 74.
    Talib WH (2018) Melatonin and cancer hallmarks. Molecules 23:518.  https://doi.org/10.3390/molecules23030518 PubMedCentralCrossRefGoogle Scholar
  75. 75.
    Li W, Fan M, Chen Y, Zhao Q, Song C, Yan Y, Jin Y, Huang Z, Lin C, Wu J (2015) Melatonin induces cell apoptosis in AGS cells through the activation of JNK and P38 MAPK and the suppression of nuclear factor-kappa B: a novel therapeutic implication for gastric cancer. Cell Physiol Biochem 37:2323–2338.  https://doi.org/10.1159/000438587 PubMedCrossRefGoogle Scholar
  76. 76.
    Yang C-Y, Lin C-K, Tsao C-H, Hsieh C-C, Lin G-J, Ma K-H, Shieh Y-S, Sytwu H-K, Chen Y-W (2017) Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models. Oncotarget 8:33756–33769.  https://doi.org/10.18632/oncotarget.16808 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Song J, Ma SJ, Luo JH, Zhang H, Wang RX, Liu H, Li L, Zhang ZG, Zhou RX (2018) Melatonin induces the apoptosis and inhibits the proliferation of human gastric cancer cells via blockade of the AKT/MDM2 pathway. Oncol Rep 39:1975–1983.  https://doi.org/10.3892/or.2018.6282 PubMedCrossRefGoogle Scholar
  78. 78.
    Yeh C-M, Lin C-W, Yang J-S, Yang W-E, Su S-C, Yang S-F (2016) Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation. Oncotarget 7:21952–21967.  https://doi.org/10.18632/oncotarget.8009 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    H-lW Rui Liu, Deng Man-jing, Wen Xiu-jie, Mo Yuan-yuan, Chen Fa-ming, Zou Chun-li, Duan Wei-feng, Li Lei, Nie Xin (2018) Melatonin Inhibits reactive oxygen species-driven proliferation, epithelial-mesenchymal transition, and vasculogenic mimicry in oral cancer. Oxid Med Cell Longev 2018:1–12.  https://doi.org/10.1155/2018/3510970 CrossRefGoogle Scholar
  80. 80.
    Webb N, Bottomley M, Watson CJ, Brenchley P (1998) vascular endothelial growth factor (VEGF) is released from platelets during blood clotting: implications for measurement of circulating VEGF Levels in clinical disease. Clin Sci 94(4):395–404PubMedCrossRefGoogle Scholar
  81. 81.
    Chen C, Lou T (2017) Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget 8:46691–46703.  https://doi.org/10.18632/oncotarget.17358 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Carbajo-Pescador S, Ordoñez R, Benet M, Jover R, García-Palomo A, Mauriz JL, González-Gallego J (2013) Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br J Cancer 109:83–91.  https://doi.org/10.1038/bjc.2013.285 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ordoñez R, Fernández A, Prieto-Domínguez N, Martínez L, García-Ruiz C, Fernández-Checa JC, Mauriz JL, González-Gallego J (2015) Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells. J Pineal Res 59:178–189.  https://doi.org/10.1111/jpi.12249 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lu JJ, Fu L, Tang Z, Zhang C, Qin L, Wang J, Yu Z, Shi D, Xiao X, Xie F, Huang W, Deng W (2016) Melatonin inhibits AP-2beta/hTERT, NF-kappaB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget 7:2985–3001.  https://doi.org/10.18632/oncotarget.6407 PubMedCrossRefGoogle Scholar
  85. 85.
    Reiter R, Rosales-Corral S, Tan D-X, Acuna-Castroviejo D, Qin L, Yang S-F, Xu K (2017) Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci 18:843PubMedCentralCrossRefGoogle Scholar
  86. 86.
    Fata JE, Mori H, Ewald AJ, Zhang H, Yao E, Werb Z, Bissell MJ (2007) The MAPK(ERK-1,2) pathway integrates distinct and antagonistic signals from TGFalpha and FGF7 in morphogenesis of mouse mammary epithelium. Dev Biol 306:193–207.  https://doi.org/10.1016/j.ydbio.2007.03.013 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Subramanian P, Mirunalini S, Dakshayani KB, Pandi-Perumal SR, Trakht I, Cardinali DP (2007) Prevention by melatonin of hepatocarcinogenesis in rats injected with N-nitrosodiethylamine. J Pineal Res 43:305–312.  https://doi.org/10.1111/j.1600-079X.2007.00478.x PubMedCrossRefGoogle Scholar
  88. 88.
    Neri B, Fiorelli C, Moroni F, Nicita G, Paoletti MC, Ponchietti R, Raugei A, Santoni G, Trippitelli A, Grechi G (1994) Modulation of human lymphoblastoid interferon activity by melatonin in metastatic renal cell carcinoma. A phase II study. Cancer 73:3015–3019PubMedCrossRefGoogle Scholar
  89. 89.
    Min K-J, Kim H, Park EJ, Kwon TK (2012) Melatonin enhances thapsigargin-induced apoptosis through reactive oxygen species-mediated upregulation of CCAAT-enhancer-binding protein homologous protein in human renal cancer cells. J Pineal Res 53:99–106PubMedCrossRefGoogle Scholar
  90. 90.
    Zamfir Chiru AA, Popescu CR, Gheorghe DC (2014) Melatonin and cancer. J Med Life 7:373–374PubMedPubMedCentralGoogle Scholar
  91. 91.
    Kim HS, Kim T-J, Yoo Y-M (2014) Melatonin combined with endoplasmic reticulum stress induces cell death via the PI3 K/Akt/mTOR pathway in B16F10 melanoma cells. PLoS ONE 9:e92627.  https://doi.org/10.1371/journal.pone.0092627 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Watson M, Holman DM, Maguire-Eisen M (2016) Ultraviolet radiation exposure and its impact on skin cancer risk. Semin Oncol Nurs 32:241–254.  https://doi.org/10.1016/j.soncn.2016.05.005 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Jung B, Ahmad N (2006) Melatonin in cancer management: progress and promise. Can Res 66:9789–9793.  https://doi.org/10.1158/0008-5472.can-06-1776 CrossRefGoogle Scholar
  94. 94.
    Yi C, Zhang Y, Yu Z, Xiao Y, Wang J, Qiu H, Yu W, Tang R, Yuan Y, Guo W, Deng W (2014) Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-kappaB/p300 signaling pathways. PLoS ONE 9:e99943.  https://doi.org/10.1371/journal.pone.0099943 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yang QH, Xu JN, Xu RK, Pang SF (2006) Inhibitory effects of melatonin on the growth of pituitary prolactin-secreting tumor in rats. J Pineal Res 40:230–235.  https://doi.org/10.1111/j.1600-079X.2005.00305.x PubMedCrossRefGoogle Scholar
  96. 96.
    Mao L, Dauchy R, Blask D, Dauchy E, Slakey L, Brimer S, Yuan L, Xiang S, Hauch A, Smith K, Frasch T, Belancio V, Wren M, Hill S (2015) Melatonin suppression of aerobic glycolysis (Warburg effect), survival signaling, and metastasis in human leiomyosarcoma. J Pineal Res 60:167–177PubMedCrossRefGoogle Scholar
  97. 97.
    Burattini S, Battistelli M, Codenotti S, Falcieri E, Fanzani A, Salucci S (2016) Melatonin action in tumor skeletal muscle cells: an ultrastructural study. Acta Histochem 118:278–285PubMedCrossRefGoogle Scholar
  98. 98.
    Batista AP, da Silva TG, Teixeira ÁA, de Medeiros PL, Teixeira VW, Alves LC, dos Santos FA (2013) Melatonin effect on the ultrastructure of Ehrlich ascites tumor cells, lifetime and histopathology in Swiss mice. Life Sci 93(23):882–888PubMedCrossRefGoogle Scholar
  99. 99.
    Danielczyk K, Dziegiel P (2009) MT1 melatonin receptors and their role in the oncostatic action of melatonin. Postepy Hig Med Dosw (Online) 63:425–434Google Scholar
  100. 100.
    Casado-Zapico S, Rodriguez-Blanco J, Garcia-Santos G, Martin V, Sanchez-Sanchez AM, Antolin I, Rodriguez C (2010) Synergistic antitumor effect of melatonin with several chemotherapeutic drugs on human Ewing sarcoma cancer cells: potentiation of the extrinsic apoptotic pathway. J Pineal Res 48:72–80.  https://doi.org/10.1111/j.1600-079X.2009.00727.x PubMedCrossRefGoogle Scholar
  101. 101.
    Cutando A, Lopez-Valverde A, Arias-Santiago S, Dev J, Ded RG (2012) Role of melatonin in cancer treatment. Anticancer Res 32:2747–2753PubMedGoogle Scholar
  102. 102.
    Seely D, Wu P, Fritz H, Kennedy D, Tsui T, Seely A, Mills E (2011) Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials. Integr Cancer Ther 11:293–303PubMedCrossRefGoogle Scholar
  103. 103.
    Malhotra S, Sawhney G, Pandhi P (2004) The therapeutic potential of melatonin: a review of the science. MedGenMed 6:46PubMedPubMedCentralGoogle Scholar
  104. 104.
    Altun A, Ugur-Altun B (2007) Melatonin: therapeutic and clinical utilization. Int J Clin Pract 61:835–845.  https://doi.org/10.1111/j.1742-1241.2006.01191.x PubMedCrossRefGoogle Scholar
  105. 105.
    Lissoni P, Meregalli S, Fossati V, Paolorossi F, Barni S, Tancini G, Frigerio F (1994) A randomized study of immunotherapy with low-dose subcutaneous interleukin-2 plus melatonin vs chemotherapy with cisplatin and etoposide as first-line therapy for advanced non-small cell lung cancer. Tumori Journal 80:464–467.  https://doi.org/10.1177/030089169408000611 PubMedCrossRefGoogle Scholar
  106. 106.
    Lissoni P, Barni S, Meregalli S, Fossati V, Cazzaniga M, Esposti D, Tancini G (1995) Modulation of cancer endocrine therapy by melatonin: a phase II study of tamoxifen plus melatonin in metastatic breast cancer patients progressing under tamoxifen alone. Br J Cancer 71:854–856PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Cerea G, Vaghi M, Ardizzoia A, Villa S, Bucovec R, Mengo S, Gardani G, Tancini G, Lissoni P (2003) Biomodulation of cancer chemotherapy for metastatic colorectal cancer: a randomized study of weekly low-dose irinotecan alone versus irinotecan plus the oncostatic pineal hormone melatonin in metastatic colorectal cancer patients progressing on 5-fluorouracil-containing combinations. Anticancer Res 23:1951–1954PubMedGoogle Scholar
  108. 108.
    Barni S, Lissoni P, Cazzaniga M, Ardizzoia A, Meregalli S, Fossati V, Fumagalli L, Brivio F, Tancini G (1995) A randomized study of low-dose subcutaneous interleukin-2 plus melatonin versus supportive care alone in metastatic colorectal cancer patients progressing under 5-fluorouracil and folates. Oncology 52:243–245.  https://doi.org/10.1159/000227465 PubMedCrossRefGoogle Scholar
  109. 109.
    Crino L, Latini P, Meacci M, Corgna E, Maranzano E, Darwish S, Minotti V, Santucci A, Tonato M (1993) Induction chemotherapy plus high-dose radiotherapy versus radiotherapy alone in locally advanced unresectable non-small-cell lung cancer. Ann Oncol 4:847–851PubMedCrossRefGoogle Scholar
  110. 110.
    Ghielmini M, Pagani O, de Jong J, Pampallona S, Conti A, Maestroni G, Sessa C, Cavalli F (1999) Double-blind randomized study on the myeloprotective effect of melatonin in combination with carboplatin and etoposide in advanced lung cancer. Br J Cancer 80:1058–1061.  https://doi.org/10.1038/sj.bjc.6690463 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lissoni P, Paolorossi F, Ardizzoia A, Barni S, Chilelli M, Mancuso M, Tancini G, Conti A, Maestroni GJ (1997) A randomized study of chemotherapy with cisplatin plus etoposide versus chemoendocrine therapy with cisplatin, etoposide and the pineal hormone melatonin as a first-line treatment of advanced non-small cell lung cancer patients in a poor clinical state. J Pineal Res 23:15–19PubMedCrossRefGoogle Scholar
  112. 112.
    Megwalu UC, Finnell JE, Piccirillo JF (2006) The effects of melatonin on tinnitus and sleep. Otolaryngol-Head Neck Surg 134:210–213.  https://doi.org/10.1016/j.otohns.2005.10.007 PubMedCrossRefGoogle Scholar
  113. 113.
    Di Bella G, Mascia F, Ricchi A, Colori B (2013) Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report. Neuro Endocrinol Lett 34:660–668PubMedGoogle Scholar
  114. 114.
    Schernhammer ES, Giobbie-Hurder A, Gantman K, Savoie J, Scheib R, Parker LM, Chen WY (2012) A randomized controlled trial of oral melatonin supplementation and breast cancer biomarkers. Cancer Causes Control 23:609–616.  https://doi.org/10.1007/s10552-012-9927-8 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Chao C-C, Chen P-C, Chiou P-C, Hsu C-J, Liu P-Y, Yang Y-C, Reiter R, Yang S-F, Tang CH (2019) Melatonin suppresses lung cancer metastasis by inhibition of epithelial-mesenchymal transition through targeting to Twist. Clin Sci.  https://doi.org/10.1042/cs20180945 PubMedCrossRefGoogle Scholar
  116. 116.
    Yang Y-C, Chiou P-C, Chen P-C, Liu P-Y, Huang W-C, Chao C-C, Tang C-H (2019) Melatonin reduces lung cancer stemness through inhibiting of PLC, ERK, p38, β-catenin, and Twist pathways. Environ Toxicol 34:203–209.  https://doi.org/10.1002/tox.22674 PubMedCrossRefGoogle Scholar
  117. 117.
    Zhang W, Liu K, Pei Y, Ma J, Tan J, Zhao J (2018) Mst1 regulates non-small cell lung cancer A549 cell apoptosis by inducing mitochondrial damage via ROCK1/Factin pathways. Int J Oncol 53:2409–2422.  https://doi.org/10.3892/ijo.2018.4586 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Xie Y, Lv Y, Zhang Y, Liang Z, Han L, Xie Y (2019) LATS2 promotes apoptosis in non-small cell lung cancer A549 cells via triggering Mff-dependent mitochondrial fission and activating the JNK signaling pathway. Biomed Pharmacother 109:679–689.  https://doi.org/10.1016/j.biopha.2018.10.097 PubMedCrossRefGoogle Scholar
  119. 119.
    Chu LW, John EM, Yang B, Kurian AW, Zia Y, Yu K, Ingles SA, Stanczyk FZ, Hsing AW (2018) Measuring serum melatonin in postmenopausal women: implications for epidemiologic studies and breast cancer studies. PLoS ONE 13:e0195666.  https://doi.org/10.1371/journal.pone.0195666 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Hasan M, Marzouk MA, Adhikari S, Wright T, Miller B, Peckich B, Yingling S, Stratford R, Zlotos D, Cavanaugh J, Witt-Enderby P (2018) Abstract 3915: melatonin-tamoxifen hybrid ligands and their effects on breast cancer. Can Res 78:3915.  https://doi.org/10.1158/1538-7445.am2018-3915 CrossRefGoogle Scholar
  121. 121.
    Sonehara NM, Lacerda JZ, Jardim-Perassi BV, de Paula Jr R, Moschetta-Pinheiro MG, Souza YST, de Andrade JCJ, De Campos Zuccari DAP (2019) Melatonin regulates tumor aggressiveness under acidosis condition in breast cancer cell lines. Oncol Lett 17:1635–1645.  https://doi.org/10.3892/ol.2018.9758 PubMedCrossRefGoogle Scholar
  122. 122.
    Alonso-Gonzalez C, Menendez-Menendez J, Gonzalez-Gonzalez A, Gonzalez A, Cos S, Martinez-Campa C (2018) Melatonin enhances the apoptotic effects and modulates the changes in gene expression induced by docetaxel in MCF7 human breast cancer cells. Int J Oncol 52:560–570.  https://doi.org/10.3892/ijo.2017.4213 PubMedCrossRefGoogle Scholar
  123. 123.
    Marques JHM, Mota AL, Oliveira JG, Lacerda JZ, Stefani JP, Ferreira LC, Castro TB, Aristizabal-Pachon AF, Zuccari D (2018) Melatonin restrains angiogenic factors in triple-negative breast cancer by targeting miR-152-3p: in vivo and in vitro studies. Life Sci 208:131–138.  https://doi.org/10.1016/j.lfs.2018.07.012 PubMedCrossRefGoogle Scholar
  124. 124.
    Sakatani A, Sonohara F, Goel A (2018) Melatonin-mediated downregulation of thymidylate synthase as a novel mechanism for overcoming 5-fluorouracil associated chemoresistance in colorectal cancer cells. Carcinogenesis.  https://doi.org/10.1093/carcin/bgy186 CrossRefGoogle Scholar
  125. 125.
    Pariente R, Bejarano I, Rodríguez AB, Pariente JA, Espino J (2018) Melatonin increases the effect of 5-fluorouracil-based chemotherapy in human colorectal adenocarcinoma cells in vitro. Mol Cell Biochem 440:43–51.  https://doi.org/10.1007/s11010-017-3154-2 PubMedCrossRefGoogle Scholar
  126. 126.
    Lee JH, Yun CW, Han Y-S, Kim S, Jeong D, Kwon HY, Kim H, Baek M-J, Lee SH (2018) Melatonin and 5-fluorouracil co-suppress colon cancer stem cells by regulating cellular prion protein-Oct4 axis. J Pineal Res 65:e12519.  https://doi.org/10.1111/jpi.12519 PubMedCrossRefGoogle Scholar
  127. 127.
    Ataei N, Aghaei M, Panjehpour M (2018) The protective role of melatonin in cadmium-induced proliferation of ovarian cancer cells. Res Pharm Sci 13:159–167.  https://doi.org/10.4103/1735-5362.223801 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Akbarzadeh M, Movassaghpour AA, Ghanbari H, Kheirandish M, Fathi Maroufi N, Rahbarghazi R, Nouri M, Samadi N (2017) The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci Rep 7:17062.  https://doi.org/10.1038/s41598-017-16940-y PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Chen L, Liu L, Li Y, Gao J (2018) Melatonin increases human cervical cancer HeLa cells apoptosis induced by cisplatin via inhibition of JNK/Parkin/mitophagy axis. In Vitro Cell Dev Biol 54:1–10.  https://doi.org/10.1007/s11626-017-0200-z CrossRefGoogle Scholar
  130. 130.
    Liu VWS, Yau WL, Tam CW, Yao K-M, Shiu SYW (2017) Melatonin inhibits androgen receptor splice variant-7 (AR-V7)-induced nuclear factor-kappa B (NF-κB) activation and NF-κB Activator-induced AR-V7 expression in prostate cancer cells: potential implications for the use of melatonin in castration-resistant prostate cancer (CRPC) therapy. Int J Mol Sci 18:1130PubMedCentralCrossRefGoogle Scholar
  131. 131.
    Sohn EJ, Won G, Lee J, Lee S, Kim S-H (2015) Upregulation of miRNA3195 and miRNA374b mediates the anti-angiogenic properties of melatonin in hypoxic PC-3 prostate cancer cells. J Cancer 6:19–28.  https://doi.org/10.7150/jca.9591 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Siu SWF, Lau KW, Tam PC, Shiu SYW (2002) Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity. Prostate 52:106–122.  https://doi.org/10.1002/pros.10098 PubMedCrossRefGoogle Scholar
  133. 133.
    Zibolka J, Bazwinsky-Wutschke I, Mühlbauer E, Peschke E (2018) Distribution and density of melatonin receptors in human main pancreatic islet cell types. J Pineal Res 65:e12480.  https://doi.org/10.1111/jpi.12480 PubMedCrossRefGoogle Scholar
  134. 134.
    Fischer TW, Zmijewski MA, Zbytek B, Sweatman TW, Slominski RM, Wortsman J, Slominski A (2006) Oncostatic effects of the indole melatonin and expression of its cytosolic and nuclear receptors in cultured human melanoma cell lines. Int J Oncol 29:665–672PubMedGoogle Scholar
  135. 135.
    Mao L, Dauchy RT, Blask DE, Dauchy EM, Slakey LM, Brimer S, Yuan L, Xiang S, Hauch A, Smith K, Frasch T, Belancio VP, Wren MA, Hill SM (2016) Melatonin suppression of aerobic glycolysis (Warburg effect), survival signalling and metastasis in human leiomyosarcoma. J Pineal Res 60:167–177.  https://doi.org/10.1111/jpi.12298 PubMedCrossRefGoogle Scholar
  136. 136.
    Lin Y-W, Lee L-M, Lee W-J, Chu C-Y, Tan P, Yang Y-C, Chen W-Y, Yang S-F, Hsiao M, Chien M-H (2016) Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-κB DNA-binding activity. J Pineal Res 60:277–290.  https://doi.org/10.1111/jpi.12308 PubMedCrossRefGoogle Scholar
  137. 137.
    Song J, Ma S-J, Luo J-H, Liu H, Li L, Zhang Z-G, Chen L-S, Zhou R-X (2019) Down-regulation of AKT and MDM2, Melatonin induces apoptosis in AGS and MGC803 cells. Anat Rec.  https://doi.org/10.1002/ar.24101 CrossRefGoogle Scholar
  138. 138.
    Innominato PF, Lim AS, Palesh O, Clemons M, Trudeau M, Eisen A, Wang C, Kiss A, Pritchard KI, Bjarnason GA (2016) The effect of melatonin on sleep and quality of life in patients with advanced breast cancer. Support Care Cancer 24:1097–1105.  https://doi.org/10.1007/s00520-015-2883-6 PubMedCrossRefGoogle Scholar
  139. 139.
    Mills E, Wu P, Seely D, Guyatt G (2005) Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis. J Pineal Res 39:360–366.  https://doi.org/10.1111/j.1600-079X.2005.00258.x PubMedCrossRefGoogle Scholar
  140. 140.
    Seabra MdLV, Bignotto M, Pinto LR Jr, Tufik S (2000) Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J Pineal Res 29:193–200.  https://doi.org/10.1034/j.1600-0633.2002.290401.x PubMedCrossRefGoogle Scholar
  141. 141.
    Seely D, Wu P, Fritz H, Kennedy DA, Tsui T, Seely AJE, Mills E (2012) Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials. Integr Cancer Ther 11:293–303.  https://doi.org/10.1177/1534735411425484 PubMedCrossRefGoogle Scholar
  142. 142.
    Lissoni P, Barni S, Cattaneo G, Tancini G, Esposti G, Esposti D, Fraschini F (1991) Clinical results with the pineal hormone melatonin in advanced cancer resistant to standard antitumor therapies. Oncology 48:448–450.  https://doi.org/10.1159/000226978 PubMedCrossRefGoogle Scholar
  143. 143.
    Haghi-Aminjan H, Farhood B, Rahimifard M, Didari T, Baeeri M, Hassani S, Hosseini R, Abdollahi M (2018) The protective role of melatonin in chemotherapy-induced nephrotoxicity: a review of non-clinical studies. Expert Opin Drug Metab Toxicol 14:937–950.  https://doi.org/10.1080/17425255.2018.1513492 PubMedCrossRefGoogle Scholar
  144. 144.
    Lozano A, Marruecos J, Rubió-Casadevall J, Farre N, Lopez-Pousa A, Giralt J, Planas I, Cirauqui B, Lanzuela M, Morera R, Escribano A, Gomez-Millan J, Toledo MD, Masedo GV, Cascallar L, Grima P, Valenti V, Tarrago C, Bosser R (2018) Mesia R and Study M Phase II trial of high-dose melatonin oral gel for the prevention and treatment of oral mucositis in H&N cancer patients undergoing chemoradiation (MUCOMEL). J Clin Oncol 36:6007.  https://doi.org/10.1200/jco.2018.36.15_suppl.6007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sankha Bhattacharya
    • 1
  • Krishna Kumar Patel
    • 1
  • Deepa Dehari
    • 1
  • Ashish Kumar Agrawal
    • 1
  • Sanjay Singh
    • 1
    • 2
    Email author
  1. 1.Department of Pharmaceutical Engineering and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  2. 2.Babasaheb Bhimrao Ambedkar University (BBAU)LucknowIndia

Personalised recommendations