Role of angiotensin type 2 receptor in improving lipid metabolism and preventing adiposity

  • Sourashish Nag
  • Sanket Patel
  • Shailaja Mani
  • Tahir HussainEmail author


Recent studies on mice with null mutation of the angiotensin type 2 receptor (AT2R) gene have implicated the involvement of AT2R in regulating adipocyte size and obesity, a major risk factor for metabolic syndrome. However, the outcome from these studies remains inconclusive. Therefore, current study was designed to test whether pharmacological activation of AT2R regulates adiposity and lipid metabolism. Male mice (5-weeks old) were pre-treated with vehicle or AT2R agonist (C21, 0.3 mg/kg, i.p., daily, for 4 days) and fed normal diet (ND). Then these animals were subdivided into ND and high-fat diet (HFD) regimen and concomitantly treated with vehicle or C21 through day 14. Vehicle-treated HFD-fed mice demonstrated an increase in epididymal white adipose tissue (eWAT) weight and adipocyte size, which were associated with increased eWAT expression of the lipogenic regulators, fatty acid binding protein and fatty acid synthase, decreased expression of adipose triglyceride lipase and increased expression of hormone-sensitive lipase. Interestingly, C21 pre-treatment altered HFD-induced changes in lipogenic and lipolytic regulators. C21 pre-treatment prevented decrease in expression of uncoupler protein-1 in brown adipose in HFD-fed mice, which was associated with increased core temperature. In addition, C21 pre-treatment ameliorated plasma-free fatty acids, triglycerides, insulin and tumor necrosis factor-α in HFD-fed mice. Ex-vivo study in isolated primary epididymal adipocytes revealed that C21 inhibits long chain fatty acid transporter, via a nitric oxide synthase/guanylate cyclase/protein kinase G-dependent pathway. Collectively, we propose pharmacological activation of AT2R regulates fatty acid metabolism and thermogenesis and prevents HFD-induced adiposity in mice.


Adipocyte AT2Fatty acid transporter (FATP) Lipid metabolism Adiposity 


Author contributions

SN and SP designed and performed the study and acquired, analyzed and interpreted data; SN, SP, SM and TH drafted the article and revised critically for important intellectual content; SN, SP, SM and TH approved the final version of the manuscript.


This work was supported by the National Institutes of Health grant R0I DK-61578 to TH and institutional funds.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11010_2019_3602_MOESM1_ESM.doc (184 kb)
Supplementary material 1 (DOC 183 kb)


  1. 1.
    Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease—a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67:968–977CrossRefGoogle Scholar
  2. 2.
    Barrett-Connor EL (1985) Obesity, atherosclerosis, and coronary artery disease. Ann Intern Med 103:1010–1019CrossRefGoogle Scholar
  3. 3.
    Bonadonna RC, Leif G, Kraemer N, Ferrannini E, Del Prato S, DeFronzo RA (1990) Obesity and insulin resistance in humans: a dose-response study. Metabolism 39:452–459CrossRefGoogle Scholar
  4. 4.
    Elmarakby AA, Imig JD (2010) Obesity is the major contributor to vascular dysfunction and inflammation in high-fat diet hypertensive rats. Clin Sci 118:291–301CrossRefGoogle Scholar
  5. 5.
    Mathieu P, Lemieux I, Despres JP (2010) Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther 87:407–416CrossRefGoogle Scholar
  6. 6.
    Fodor GJ, McInnis NH, Helis E, Turton P, Leenen FH (2009) Lifestyle changes and blood pressure control: a community-based cross-sectional survey (2006 Ontario Survey on the Prevalence and Control of Hypertension). J Clin Hypertens 11:31–35CrossRefGoogle Scholar
  7. 7.
    Jansson SP, Engfeldt P, Magnuson A, Lohse G, Liljegren G (2013) Interventions for lifestyle changes to promote weight reduction, a randomized controlled trial in primary health care. BMC Res Notes 6:213CrossRefGoogle Scholar
  8. 8.
    Bloom SR, Kuhajda FP, Laher I, Pi-Sunyer X, Ronnett GV, Tan TM, Weigle DS (2008) The obesity epidemic—pharmacological challenges. Mol Interv 8:82–98CrossRefGoogle Scholar
  9. 9.
    Rodgers RJ, Tschop MH, Wilding JP (2012) Anti-obesity drugs: past, present and future. Dis Model Mech 5:621–626CrossRefGoogle Scholar
  10. 10.
    Greqoir FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809CrossRefGoogle Scholar
  11. 11.
    Wu Q, Ortegon AM, Tsang B, Doege H, Feingold KR, Stahl A (2006) FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol 26:3455–3467CrossRefGoogle Scholar
  12. 12.
    Kim JK, Gimeno RE, Higashimori T, Kim H-J, Choi H, Punreddy S, Mozell RL, Tan G, Stricker-Krongrad A, Hirsch DJ, Fillmore JJ, Liu Z-X, Dong J, Cline G, Stahl A, Lodish HF, Shulman GI (2004) Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J Clin Invest 113:756–763CrossRefGoogle Scholar
  13. 13.
    Gertow K, Pietilainen KH, Yki-Jarvinen H, Kaprio J, Rissanen A, Eriksson P, Hamsten A, Fisher RM (2004) Expression of fatty-acid-handling proteins in human adipose tissue in relation to obesity and insulin resistance. Diabetologia 47:1118–1125CrossRefGoogle Scholar
  14. 14.
    Yvan-Charvet L, Quignard-Boulange A (2011) Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int 79:162–168CrossRefGoogle Scholar
  15. 15.
    Kalupahana NS, Moustaid-Moussa N (2012) The renin-angiotensin system: a link between obesity, inflammation and insulin resistance. Obes Rev 13:136–149CrossRefGoogle Scholar
  16. 16.
    Nag S, Khan MA, Samuel P, Ali Q, Hussain T (2015) Chronic angiotensin AT2R activation prevents high-fat diet-induced adiposity and obesity in female mice independent of estrogen. Metabolism 64:814–825CrossRefGoogle Scholar
  17. 17.
    Hakam AC, Hussain T (2005) Renal angiotensin II type-2 receptors are upregulated and mediate the candesartan-induced natriuresis/diuresis in obese Zucker rats. Hypertens 45:270–275CrossRefGoogle Scholar
  18. 18.
    Jones ES, Black MJ, Widdop RE (2012) Influence of angiotensin II subtype 2 receptor (AT(2)R) antagonist, PD123319, on cardiovascular remodelling of aged spontaneously hypertensive rats during chronic angiotensin II subtype 1 receptor (AT(1)R) blockade. Int J Hypertens 2012:543062CrossRefGoogle Scholar
  19. 19.
    Putnam K, Batifoulier-Yiannikouris F, Bharadwaj KG, Lewis E, Karounos M, Daugherty A, Cassis LA (2012) Deficiency of angiotensin type 1a receptors in adipocytes reduces differentiation and promotes hypertrophy of adipocytes in lean mice. Endocrinology 153:4677–4686CrossRefGoogle Scholar
  20. 20.
    Yvan-Charvet L, Even P, Bloch-Faure M, Guerre-Millo M, Moustaid-Moussa N, Ferre P, Quignard-Boulange A (2005) Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes 54:991–999CrossRefGoogle Scholar
  21. 21.
    Samuel P, Khan MA, Nag S, Inagami T, Hussain T (2013) Angiotensin AT(2) receptor contributes towards gender bias in weight gain. PLoS ONE 8:e48425CrossRefGoogle Scholar
  22. 22.
    Iwai M, Tomono Y, Inaba S, Kanno H, Senba I, Mogi M, Horiuchi M (2009) AT2 receptor deficiency attenuates adipocyte differentiation and decreases adipocyte number in atherosclerotic mice. Am J Hypertens 22:784–791CrossRefGoogle Scholar
  23. 23.
    Namsolleck P, Boato F, Schwengel K, Paulis L, Matho KS, Geurts N, Thone-Reineke C, Lucht K, Seidel K, Hallberg A, Dahlof B, Unger T, Hendrix S, Steckelings UM (2013) AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression. Neurobiol Dis 51:177–191CrossRefGoogle Scholar
  24. 24.
    Matavelli LC, Huang J, Siragy HM (2011) Angiotensin AT(2) receptor stimulation inhibits early renal inflammation in renovascular hypertension. Hypertens 57:308–313CrossRefGoogle Scholar
  25. 25.
    Pellegrinelli V, Carobbio S, Vidal-Puig A (2016) Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 59:1075–1088CrossRefGoogle Scholar
  26. 26.
    Schaffer JE, Lodisht HF (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79:427–436CrossRefGoogle Scholar
  27. 27.
    Thompson BR, Mazurkiewicz-Munoz AM, Suttles J, Carter-Su C, Bernlohr DA (2009) Interaction of adipocyte fatty acid-binding protein (AFABP) and JAK2: AFABP/aP2 as a regulator of JAK2 signaling. J Biol Chem 284:13473–13480CrossRefGoogle Scholar
  28. 28.
    Wakil SJ, Abu-Elheiga LA (2009) Fatty acid metabolism: target for metabolic syndrome. J Lipid Res 50(Suppl):S138–S143CrossRefGoogle Scholar
  29. 29.
    Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737CrossRefGoogle Scholar
  30. 30.
    Osuga JI, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer FB, Tsutsumi O, Yamada N (2000) Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA 97:787–792CrossRefGoogle Scholar
  31. 31.
    Sekiya M, Osuga J, Okazaki H, Yahagi N, Harada K, Shen WJ, Tamura Y, Tomita S, Iizuka Y, Ohashi K, Okazaki M, Sata M, Nagai R, Fujita T, Shimano H, Kraemer FB, Yamada N, Ishibashi S (2004) Absence of hormone-sensitive lipase inhibits obesity and adipogenesis in Lep ob/ob mice. J Biol Chem 279:15084–15090CrossRefGoogle Scholar
  32. 32.
    Schoiswohl G, Stefanovic-Racic M, Menke MN, Wills RC, Surlow BA, Basantani MK, Sitnick MT, Cai L, Yazbeck CF, Stolz DB, Pulinilkunnil T, O’Doherty RM, Kershaw EE (2015) Impact of reduced ATGL-mediated adipocyte lipolysis on obesity-associated insulin resistance and inflammation in male mice. Endocrinology 156:3610–3624CrossRefGoogle Scholar
  33. 33.
    Bertile F, Raclot T (2011) ATGL and HSL are not coordinately regulated in response to fuel partitioning in fasted rats. J Nutr Biochem 22:372–379CrossRefGoogle Scholar
  34. 34.
    Li L, Yang G, Shi S, Yang M, Liu H, Boden G (2009) The adipose triglyceride lipase, adiponectin and visfatin are downregulated by tumor necrosis factor-alpha (TNF-alpha) in vivo. Cytokine 45:12–19CrossRefGoogle Scholar
  35. 35.
    Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90:367–417CrossRefGoogle Scholar
  36. 36.
    Schaffer JE, Lodish HF (1995) Molecular mechanism of long-chain fatty acid uptake. Trends Cardiovasc Med 5:218–224CrossRefGoogle Scholar
  37. 37.
    Gimeno RE (2007) Fatty acid transport proteins. Curr Opin Lipidol 18:271–276CrossRefGoogle Scholar
  38. 38.
    Alfarano C, Sartiani L, Nediani C, Mannucci E, Mugelli A, Cerbai E, Raimondi L (2008) Functional coupling of angiotensin II type 1 receptor with insulin resistance of energy substrate uptakes in immortalized cardiomyocytes (HL-1 cells). Br J Pharmacol 153:907–914CrossRefGoogle Scholar
  39. 39.
    Taguchi K, Matsumoto T, Kamata K, Kobayashi T (2012) Angiotensin II type 2 receptor-dependent increase in nitric oxide synthase activity in the endothelium of db/db mice is mediated via a MEK pathway. Pharmacol Res 66:41–50CrossRefGoogle Scholar
  40. 40.
    Holloway GP, Chou CJ, Lally J, Stellingwerff T, Maher AC, Gavrilova O, Haluzik M, Alkhateeb H, Reitman ML, Bonen A (2011) Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance. Diabetologia 54:1457–1467CrossRefGoogle Scholar
  41. 41.
    Tsukuda K, Mogi M, Iwanami J, Kanno H, Nakaoka H, Wang XL, Bai HY, Shan BS, Kukida M, Higaki A, Yamauchi T, Min LJ, Horiuchi M (2016) Enhancement of adipocyte browning by angiotensin II type 1 receptor blockade. PLoS ONE 11:e0167704CrossRefGoogle Scholar
  42. 42.
    Quiroga DT, Munoz MC, Gil C, Pffeifer M, Toblli JE, Steckelings UM, Giani JF, Dominici FP (2018) Chronic administration of the angiotensin type 2 receptor agonist C21 improves insulin sensitivity in C57BL/6 mice. Physiol Rep 6:e13824CrossRefGoogle Scholar
  43. 43.
    Than A, Xu S, Li R, Leow M-S, Sun L, Chen P (2017) Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis. Signal Transduct Target Ther 2:e17022CrossRefGoogle Scholar
  44. 44.
    Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29:2959–2971CrossRefGoogle Scholar
  45. 45.
    Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377CrossRefGoogle Scholar
  46. 46.
    Gustafson B, Gogg S, Hedjazifar S, Jenndahl L, Hammarstedt A, Smith U (2009) Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metabol 297:E999–E1003CrossRefGoogle Scholar
  47. 47.
    Ran J, Hirano T, Adachi M (2005) Angiotensin II infusion increases hepatic triglyceride production via its type 2 receptor in rats. J Hypertens 23:1525–1530CrossRefGoogle Scholar
  48. 48.
    Littlejohn NK, Keen HL, Weidemann BJ, Claflin KE, Tobin KV, Markan KR, Park S, Naber MC, Gourronc FA, Pearson NA, Liu X, Morgan DA, Klingelhutz AJ, Potthoff MJ, Rahmouni K, Sigmund CD, Grobe JL (2016) Suppression of resting metabolism by the angiotensin AT2 receptor. Cell Rep 16:1548–1560CrossRefGoogle Scholar
  49. 49.
    Sabuhi R, Ali Q, Asghar M, Al-Zamily NR, Hussain T (2011) Role of the angiotensin II AT2 receptor in inflammation and oxidative stress: opposing effects in lean and obese Zucker rats. Am J Physiol Renal Physiol 300:F700–F706CrossRefGoogle Scholar
  50. 50.
    Ohshima K, Mogi M, Jing F, Iwanami J, Tsukuda K, Min LJ, Ogimoto A, Dahlof B, Steckelings UM, Unger T, Higaki J, Horiuchi M (2012) Direct angiotensin II type 2 receptor stimulation ameliorates insulin resistance in type 2 diabetes mice with PPARgamma activation. PLoS ONE 7:e48387CrossRefGoogle Scholar
  51. 51.
    Shum M, Pinard S, Guimond MO, Labbe SM, Roberge C, Baillargeon JP, Langlois MF, Alterman M, Wallinder C, Hallberg A, Carpentier AC, Gallo-Payet N (2013) Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats. Am J Physiol Endocrinol Metabol 304:E197–E210CrossRefGoogle Scholar
  52. 52.
    Dhande I, Ali Q, Hussain T (2013) Proximal tubule angiotensin AT2 receptors mediate an anti-inflammatory response via interleukin-10: role in renoprotection in obese rats. Hypertens 61:1218–1226CrossRefGoogle Scholar
  53. 53.
    Ali Q, Patel S, Hussain T (2015) Angiotensin AT2 receptor agonist prevents salt-sensitive hypertension in obese Zucker rats. Am J Physiol Renal Physiol 308:F1379–F1385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacological & Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonUSA
  2. 2.Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonUSA
  3. 3.Department of NeuroscienceBaylor College of MedicineHoustonUSA

Personalised recommendations