Skip to main content

Advertisement

Log in

Adipose tissue derived mesenchymal stem cells are better respondents to TGFβ1 for in vitro generation of cardiomyocyte-like cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are multipotent cells which hold immense potential in translational research as a novel treatment modality. In recent years, MSCs isolated from various tissues have been used in several clinical trials for the treatment of cardiac injury caused by permanent myocardial loss. However, a better MSCs source and an optimum inducer for in vitro cardiac differentiation are still far reaching and unexplored. The aim of the study was to compare the ability and efficiency of differentiation of MSCs isolated from bone marrow (BM-MSCs) and adipose tissue (ADSC) into cardiomyocyte-like cells to aid translational research. To fulfill this aim, freshly isolated BM-MSCs and ADSCs were differentiated into cardiomyocytes using 5-Azacytidine (6 μM) and TGF-β1 (25 ng/ml). These two differentiation protocols were compared on the basis of morphological, transcriptional, translational and functionality analysis. Both tissue specific MSCs, ADSCs and BM-MSCs, have similar surface marker profile and population doubling time. In both the treatment regimes, BM-MSCs and ADSCs showed morphological changes like flattening of cells and myotube formation in concurrence with structure and multinucleation, with early sign of differentiation in ADSCs. Further, the expression of cardiac specific markers including myosin light chain-2v (Mlc-2v), cardiac troponin I (cTnI), and sarco/endoplasmic reticulum Ca2+-ATPase (SerCa2) were higher in AD-TGFβ1 group, both at transcriptional and translational level. During functionality analysis by KCl stimulation, increased intracellular calcium fluorescence was observed in AD- TGFβ1 group as compared to others. Thus, ADSCs proved to be a better choice for stem cell therapy in cardiovascular diseases when induced with TGF-β1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK et al (2007) Cardiomyocytes derived from human embryonic stem cells in prosurvival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  CAS  PubMed  Google Scholar 

  2. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luriá EA, Ruadkow IA (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92

    CAS  PubMed  Google Scholar 

  3. Huang NF, Li S (2008) Mesenchymal stem cells for vascular regeneration. Regen Med 3:877–892

    Article  PubMed  PubMed Central  Google Scholar 

  4. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang J, Song T, Wu P, Chen Y, Fan X, Chen H et al (2011) Differentiation potential of human mesenchymal stem cells derived from adipose tissue and bone marrow to sinus node-like cells. Mol Med Rep 5:108–113

    PubMed  Google Scholar 

  6. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  PubMed  Google Scholar 

  7. Bieback K, Kern S, Klüter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634

    Article  Google Scholar 

  8. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G et al (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80:836–842

    Article  PubMed  Google Scholar 

  9. Najafzadeh N, Esmaeilzade B, Dastan Imcheh M (2015) Hair follicle stem cells: in vitro and in vivo neural differentiation. World J Stem Cells 7:866–872

    Article  PubMed  PubMed Central  Google Scholar 

  10. Young HE, Mancini ML, Wright RP, Smith JC, Black AC Jr, Reagan CR, Lucas PA (1995) Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 202:137–144

    Article  CAS  PubMed  Google Scholar 

  11. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  Google Scholar 

  12. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345

    Article  Google Scholar 

  13. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Planat-Bénard V, Menard C, André M, Puceat M, Perez A, Garcia-Verdugo JM, Pénicaud L, Casteilla L (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229

    Article  CAS  PubMed  Google Scholar 

  15. Shi CZ, Zhang XP, Lv ZW, Zhang HL, Xu JZ, Yin ZF, Yan YQ, Wang CQ (2012) Adipose tissue-derived stem cells embedded with eNOS restore cardiac function in acute myocardial infarction model. Int J Cardiol 154:2–8

    Article  PubMed  Google Scholar 

  16. Zhang DZ, Gai LY, Liu HW (2008) Differences between adipose-derived stem cells and mesenchymal stem cells in differentiation into cardiomyocytes. Sheng Li Xue Bao 60:341–347

    PubMed  Google Scholar 

  17. Rodrigo SF, Ramshorst JV, Hoogslag GE, Boden H, Velders MA, Cannegieter SC et al (2013) Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchymal stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up. J Cardiovasc Trans Res 6:816–825

    Article  Google Scholar 

  18. Mohyeddin-Bonab M, Mohamad-Hassani MR, Alimoghaddam K, Sanatkar M, Gasemi M, Mirkhani H et al (2007) Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Arch Iran Med 10:467–473

    PubMed  Google Scholar 

  19. Gao LR, Chen Y, Zhang NK, Yang XL, Liu HL, Wang ZG et al (2015) Intracoronary infusion of Wharton’s jelly derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med 13:162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Freitag J, Ford J, Bates D, Boyd R, Hahne A, Wang Y et al (2015) Adipose derived mesenchymal stem cell therapy in the treatment of isolated knee chondral lesions: design of a randomised controlled pilot study comparing arthroscopic microfracture versus arthroscopic microfracture combined with postoperative mesenchymal stem cell injections. BMJ Open 5:e009332

    Article  PubMed  PubMed Central  Google Scholar 

  21. Burlacu A, Rosca AM, Maniu H, Titorencu I, Dragan E, Jinga V, Simionescu M (2007) Promoting effect of 5-Azacytidine on the myogenic differentiation of bone marrow stromal cells. Eur J Cell Biol 87:173–184

    Article  CAS  PubMed  Google Scholar 

  22. Mohanty S, Bose S, Jain KG, Bhargava B, Airan B (2013) TGFβ1 contributes to cardiomyogenic-like differentiation of human bone marrow mesenchymal stem cells. Int J Cardiol 163:93–99

    Article  PubMed  Google Scholar 

  23. Jin HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, Kim SW, Yang YS, Oh W, Chang JW (2013) Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 14:17986–18001

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kakkar A, Mohanty S, Bhargava B, Airan B (2015) Role of human cardiac biopsy derived conditioned media in modulating bone marrow derived mesenchymal stem cells toward cardiomyocyte-like cells. J Pract Cardiovasc Sci 1:150–155

    Article  Google Scholar 

  25. Song K, Wang Z, Li W, Zhang C, Lim M, Liu T (2013) In vitro culture, determination, and directed differentiation of adult adipose-derived stem cells towards cardiomyocyte-like cells induced by angiotensin II. Appl Biochem Biotechnol 170:459–470

    Article  CAS  PubMed  Google Scholar 

  26. Rangappa S, Fen C, Lee EH, Bongso A, Sim EK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779

    Article  PubMed  Google Scholar 

  27. Gwak SJ, Bhang SH, Yang HS, Kim SS, Lee DH, Lee SH, Kim BS (2009) In vitro cardiomyogenic differentiation of adipose-derived stromal cells using transforming growth factor-beta1. Cell Biochem Funct 27:148–154

    Article  CAS  PubMed  Google Scholar 

  28. Li T, Hayashi M, Ito H, Furutani A, Murata T, Matsuzaki M, Hamano K (2005) Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor- β—preprogrammed bone marrow stem cells. Circulation 111:2438–2445

    Article  CAS  PubMed  Google Scholar 

  29. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  Google Scholar 

  30. Priya N, Sarcar S, Majumdar AS, SundarRaj S (2014) Explant culture: a simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. J Tissue Eng Regen Med 8:706–716

    Article  CAS  PubMed  Google Scholar 

  31. Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, Zhou H, Chen Y (2004) Mesenchymal stem stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med (Maywood) 229:623–631

    Article  CAS  Google Scholar 

  32. Li TS, Komota T, Ohshima M, Qin SL, Kubo M, Ueda K, Hamano K (2008) TGF-β induces the differentiation of bone marrow stem cells into immature cardiomyocytes. Biochem Biophys Res Commun 366:1074–1080

    Article  CAS  PubMed  Google Scholar 

  33. Ramkisoensing AA, Pijnappels DA, Askar SF, Passier R, Swildens J, Goumans MJ, Schutte CI et al (2011) Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts. PLoS ONE 6:e24164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xing Y, Lv A, Wang L, Yan X (2012) The combination of angiotensin II and 5-Azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem 360:279–287

    Article  CAS  PubMed  Google Scholar 

  35. Korhonen T, Rapila R, Ronkainen VP, Koivumäki JT, Tavi P (2010) Local Ca2+ releases enable rapid heart rates in developing cardiomyocytes. J Physiol 588(9):1407–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Itzhaki I, Rapoport S, Huber I, Mizrahi I, Zwi-Dantsis L, Arbel G, Schiller J, Gepstein L (2011) Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PLoS ONE 6:e18037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang DZ, Gai LY, Liu HW, Jin QH, Huang JH, Zhu XY (2007) Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction. Chin Med J 120:300–307

    Article  PubMed  Google Scholar 

  38. Wan Safwani WK, Makpol S, Sathapan S, Chua KH (2012) 5-Azacytidine is insufficient for cardiogenesis in human adipose-derived stem cells. J Negat Results BioMed 11:3

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tropel P, Platet N, Platel JC, Noël D, Albrieux M, Benabid AL, Berger F (2006) Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 24:2868–2876

    Article  CAS  PubMed  Google Scholar 

  40. Karakikes I, Ameen M, Termglinchan V, Wu JC (2015) Human induced pluripotent stem cell-derived cardiomyocytes insights into molecular, cellular, and functional phenotypes. Circ Res 117:80–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim YS, Ahn Y, Kwon JS, Cho YK, Jeong MH, Cho JG, Park JC, Kang JC (2012) Priming of mesenchymal stem cells with oxytocin enhances the cardiac repair in ischemia/reperfusion injury. Cells Tissues Organs 195:428–442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Biotechnology-Centre of Excellence (DBT-CoE), Indian Council of Medical Research (ICMR) (Grant No. 80/4/2011-BMS), and Council of Scientific and Industrial Research (CSIR), India. We thank Mr. Manimuthu Mani Sankar for helping in correcting and refining the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Mohanty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakkar, A., Nandy, S.B., Gupta, S. et al. Adipose tissue derived mesenchymal stem cells are better respondents to TGFβ1 for in vitro generation of cardiomyocyte-like cells. Mol Cell Biochem 460, 53–66 (2019). https://doi.org/10.1007/s11010-019-03570-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03570-3

Keywords

Navigation