Advertisement

Role of phospholipase D in migration and invasion induced by linoleic acid in breast cancer cells

  • Ricardo Diaz-Aragon
  • Javier Ramirez-Ricardo
  • Pedro Cortes-Reynosa
  • Arturo Simoni-Nieves
  • Luis-Enrique Gomez-Quiroz
  • Eduardo Perez SalazarEmail author
Article
  • 57 Downloads

Abstract

Linoleic acid (LA) is an essential and omega-6 polyunsaturated fatty acid that mediates a variety of biological processes, including migration and invasion in breast cancer cells. Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. Increases of expression and activity of PLD are reported in several human cancers, including gastric, colorectal, renal, stomach, lung and breast. In this article, we demonstrate that LA induces an increase of PLD activity in MDA-MB-231 breast cancer cells. Particularly, PLD1 and/or PLD2 mediate migration and invasion induced by LA. Moreover, LA induces increases in number and size of spheroids via PLD activity. FFAR1 also mediates migration and invasion, whereas PLD activation induced by LA requires the activities of FFAR1, FFAR4 and EGFR in MDA-MB-231 cells. In summary, PLD plays a pivotal role in migration and invasion induced by LA in MDA-MB-231 breast cancer cells.

Keywords

Breast cancer Linoleic acid PLD Migration Invasion Spheroids FFAR1 FFAR4 

Notes

Acknowledgements

R. D.-A. and J. R.-R. are supported by a CONACYT Predoctoral training grant.

Author contributions

R. D.-A., J. R.-R. and A. S.-N. performed research and analysed data; L.-E. G.-Q. analysed data; R. D.-A., P. C.-R., and E. P.S. designed the research and analysed data. R. D.-A. and E. P.S. wrote the paper with inputs from all the authors.

Funding

This work was supported by a Grant from CONACYT-Mexico (255429) and CONACYT-FOSISS-Mexico (Salud-2015-1-261637).

Compliance with ethical standards

Conflict of interest

Authors declare that there is not conflict of interest.

Supplementary material

11010_2019_3517_MOESM1_ESM.tif (2.2 mb)
Supplementary Figure 1S LA induces an increase in spheroids number and size in MCF-7 cells. Panel A. MCF-7 cells were stimulated with 90 µM LA for 5 days on low-attachment and spheroid formation was evaluated. Panel B. MCF-7 cells were stimulated with 90 µM LA for 15 days on matrigel and spheroid formation was evaluated. One positive control was included (FBS). Images were acquired and analysed for number and/or size. Graphs represent the mean ± SEM of four independent experiments. Scale bar = 300 µm. Asterisks denote comparisons made to unstimulated cells (Basal). **P<0.01, ***P<0.001, ****P<0.0001 (TIF 2213 KB)

References

  1. 1.
    McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F (1999) Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res 40:1371–1383PubMedGoogle Scholar
  2. 2.
    Ferre P (2004) The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 53(Suppl 1):S43–S50CrossRefPubMedGoogle Scholar
  3. 3.
    Soto-Guzman A, Navarro-Tito N, Castro-Sanchez L, Martinez-Orozco R, Salazar EP (2010) Oleic acid promotes MMP-9 secretion and invasion in breast cancer cells. Clin Exp Metastasis 27:505–515.  https://doi.org/10.1007/s10585-010-9340-1 CrossRefPubMedGoogle Scholar
  4. 4.
    Serna-Marquez N, Diaz-Aragon R, Reyes-Uribe E, Cortes-Reynosa P, Salazar EP (2017) Linoleic acid induces migration and invasion through FFAR4- and PI3K-/Akt-dependent pathway in MDA-MB-231 breast cancer cells. Med Oncol 34:111.  https://doi.org/10.1007/s12032-017-0969-3 CrossRefPubMedGoogle Scholar
  5. 5.
    Anderson SG, Sanders TA, Cruickshank JK (2009) Plasma fatty acid composition as a predictor of arterial stiffness and mortality. Hypertension 53:839–845.  https://doi.org/10.1161/HYPERTENSIONAHA.108.123885 CrossRefPubMedGoogle Scholar
  6. 6.
    Kris-Etherton PM, Taylor DS, Yu-Poth S, Huth P, Moriarty K, Fishell V, Hargrove RL, Zhao G, Etherton TD (2000) Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 71:179S–179S88S.  https://doi.org/10.1093/ajcn/71.1.179S CrossRefPubMedGoogle Scholar
  7. 7.
    Byon CH, Hardy RW, Ren C, Ponnazhagan S, Welch DR, McDonald JM, Chen Y (2009) Free fatty acids enhance breast cancer cell migration through plasminogen activator inhibitor-1 and SMAD4. Lab Invest 89:1221–1228.  https://doi.org/10.1038/labinvest.2009.97 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Espinosa-Neira R, Mejia-Rangel J, Cortes-Reynosa P, Salazar EP (2011) Linoleic acid induces an EMT-like process in mammary epithelial cells MCF10A. Int J Biochem Cell Biol 43:1782–1791.  https://doi.org/10.1016/j.biocel.2011.08.017 CrossRefPubMedGoogle Scholar
  9. 9.
    Serna-Marquez N, Villegas-Comonfort S, Galindo-Hernandez O, Navarro-Tito N, Millan A, Salazar EP (2013) Role of LOXs and COX-2 on FAK activation and cell migration induced by linoleic acid in MDA-MB-231 breast cancer cells. Cell Oncol (Dordr) 36:65–77.  https://doi.org/10.1007/s13402-012-0114-4 CrossRefGoogle Scholar
  10. 10.
    Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94.  https://doi.org/10.1038/nm1168 CrossRefPubMedGoogle Scholar
  11. 11.
    Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311.  https://doi.org/10.1074/jbc.M211495200 CrossRefPubMedGoogle Scholar
  12. 12.
    Soto-Guzman A, Robledo T, Lopez-Perez M, Salazar EP (2008) Oleic acid induces ERK1/2 activation and AP-1 DNA binding activity through a mechanism involving Src kinase and EGFR transactivation in breast cancer cells. Mol Cell Endocrinol 294:81–91.  https://doi.org/10.1016/j.mce.2008.08.003 CrossRefPubMedGoogle Scholar
  13. 13.
    Navarro-Tito N, Robledo T, Salazar EP (2008) Arachidonic acid promotes FAK activation and migration in MDA-MB-231 breast cancer cells. Exp Cell Res 314:3340–3355.  https://doi.org/10.1016/j.yexcr.2008.08.018 CrossRefPubMedGoogle Scholar
  14. 14.
    Hopkins MM, Zhang Z, Liu Z, Meier KE (2016) Eicosopentaneoic acid and other free fatty acid receptor agonists inhibit lysophosphatidic acid- and epidermal growth factor-induced proliferation of human breast cancer cells. J Clin Med.  https://doi.org/10.3390/jcm5020016 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hardy S, St-Onge GG, Joly E, Langelier Y, Prentki M (2005) Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40. J Biol Chem 280:13285–13291.  https://doi.org/10.1074/jbc.M410922200 CrossRefPubMedGoogle Scholar
  16. 16.
    Exton JH (1999) Regulation of phospholipase D. Biochim Biophys Acta 1439:121–133CrossRefPubMedGoogle Scholar
  17. 17.
    Gomez-Cambronero J (2014) Phosphatidic acid, phospholipase D and tumorigenesis. Adv Biol Regul 54:197–206.  https://doi.org/10.1016/j.jbior.2013.08.006 CrossRefPubMedGoogle Scholar
  18. 18.
    Selvy PE, Lavieri RR, Lindsley CW, Brown HA (2011) Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 111:6064–6119.  https://doi.org/10.1021/cr200296t CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hammond SM, Altshuller YM, Sung TC, Rudge SA, Rose K, Engebrecht J, Morris AJ, Frohman MA (1995) Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem 270:29640–29643CrossRefPubMedGoogle Scholar
  20. 20.
    Colley WC, Sung TC, Roll R, Jenco J, Hammond SM, Altshuller Y, Bar-Sagi D, Morris AJ, Frohman MA (1997) Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol 7:191–201CrossRefPubMedGoogle Scholar
  21. 21.
    Kodaki T, Yamashita S (1997) Cloning, expression, and characterization of a novel phospholipase D complementary DNA from rat brain. J Biol Chem 272:11408–11413CrossRefPubMedGoogle Scholar
  22. 22.
    Cockcroft S (2001) Signalling roles of mammalian phospholipase D1 and D2. Cell Mol Life Sci 58:1674–1687.  https://doi.org/10.1007/PL00000805 CrossRefPubMedGoogle Scholar
  23. 23.
    Jang JH, Lee CS, Hwang D, Ryu SH (2012) Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res 51:71–81.  https://doi.org/10.1016/j.plipres.2011.12.003 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao C, Du G, Skowronek K, Frohman MA, Bar-Sagi D (2007) Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat Cell Biol 9:706–712.  https://doi.org/10.1038/ncb1594 PubMedGoogle Scholar
  25. 25.
    Foster DA, Salloum D, Menon D, Frias MA (2014) Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR). J Biol Chem 289:22583–22588.  https://doi.org/10.1074/jbc.R114.566091 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Uchida N, Okamura S, Nagamachi Y, Yamashita S (1997) Increased phospholipase D activity in human breast cancer. J Cancer Res Clin Oncol 123:280–285CrossRefPubMedGoogle Scholar
  27. 27.
    Uchida N, Okamura S, Kuwano H (1999) Phospholipase D activity in human gastric carcinoma. Anticancer Res 19:671–675PubMedGoogle Scholar
  28. 28.
    Navarro-Tito N, Soto-Guzman A, Castro-Sanchez L, Martinez-Orozco R, Salazar EP (2010) Oleic acid promotes migration on MDA-MB-231 breast cancer cells through an arachidonic acid-dependent pathway. Int J Biochem Cell Biol 42:306–317.  https://doi.org/10.1016/j.biocel.2009.11.010 CrossRefPubMedGoogle Scholar
  29. 29.
    Kang DW, Park MH, Lee YJ, Kim HS, Lindsley CW, Alex Brown H, Min do S (2011) Autoregulation of phospholipase D activity is coupled to selective induction of phospholipase D1 expression to promote invasion of breast cancer cells. Int J Cancer 128:805–816.  https://doi.org/10.1002/ijc.25402 CrossRefPubMedGoogle Scholar
  30. 30.
    Kang DW, Park MH, Lee YJ, Kim HS, Kwon TK, Park WS, Min do S (2008) Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFkappaB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J Biol Chem 283:4094–4104.  https://doi.org/10.1074/jbc.M707416200 CrossRefPubMedGoogle Scholar
  31. 31.
    Hu T, Exton JH (2005) 1-Butanol interferes with phospholipase D1 and protein kinase Calpha association and inhibits phospholipase D1 basal activity. Biochem Biophys Res Commun 327:1047–1051.  https://doi.org/10.1016/j.bbrc.2004.12.117 CrossRefPubMedGoogle Scholar
  32. 32.
    Scott SA, Selvy PE, Buck JR, Cho HP, Criswell TL, Thomas AL, Armstrong MD, Arteaga CL, Lindsley CW, Brown HA (2009) Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat Chem Biol 5:108–117.  https://doi.org/10.1038/nchembio.140 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lavieri RR, Scott SA, Selvy PE, Kim K, Jadhav S, Morrison RD, Daniels JS, Brown HA, Lindsley CW (2010) Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. J Med Chem 53:6706–6719.  https://doi.org/10.1021/jm100814g CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184CrossRefPubMedGoogle Scholar
  35. 35.
    Hu H, He LY, Gong Z, Li N, Lu YN, Zhai QW, Liu H, Jiang HL, Zhu WL, Wang HY (2009) A novel class of antagonists for the FFAs receptor GPR40. Biochem Biophys Res Commun 390:557–563.  https://doi.org/10.1016/j.bbrc.2009.10.004 CrossRefPubMedGoogle Scholar
  36. 36.
    Sparks SM, Chen G, Collins JL, Danger D, Dock ST, Jayawickreme C, Jenkinson S, Laudeman C, Leesnitzer MA, Liang X, Maloney P, McCoy DC, Moncol D, Rash V, Rimele T, Vulimiri P, Way JM, Ross S (2014) Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120). Bioorg Med Chem Lett 24:3100–3103.  https://doi.org/10.1016/j.bmcl.2014.05.012 CrossRefPubMedGoogle Scholar
  37. 37.
    Ward WH, Cook PN, Slater AM, Davies DH, Holdgate GA, Green LR (1994) Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Biochem Pharmacol 48:659–666CrossRefPubMedGoogle Scholar
  38. 38.
    Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16.  https://doi.org/10.1016/j.gene.2005.10.018 CrossRefPubMedGoogle Scholar
  39. 39.
    Schulz M, Hoffmann K, Weikert C, Nothlings U, Schulze MB, Boeing H (2008) Identification of a dietary pattern characterized by high-fat food choices associated with increased risk of breast cancer: the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br J Nutr 100:942–946.  https://doi.org/10.1017/S0007114508966149 CrossRefPubMedGoogle Scholar
  40. 40.
    Binukumar B, Mathew A (2005) Dietary fat and risk of breast cancer. World J Surg Oncol 3:45.  https://doi.org/10.1186/1477-7819-3-45 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Abel S, Riedel S, Gelderblom WC (2014) Dietary PUFA and cancer. Proc Nutr Soc 73:361–367.  https://doi.org/10.1017/S0029665114000585 CrossRefPubMedGoogle Scholar
  42. 42.
    Rose DP, Connolly JM, Liu XH (1994) Effects of linoleic acid on the growth and metastasis of two human breast cancer cell lines in nude mice and the invasive capacity of these cell lines in vitro. Cancer Res 54:6557–6562PubMedGoogle Scholar
  43. 43.
    Zheng X, Bollag WB (2003) AngII induces transient phospholipase D activity in the H295R glomerulosa cell model. Mol Cell Endocrinol 206:113–122CrossRefPubMedGoogle Scholar
  44. 44.
    Mahankali M, Henkels KM, Gomez-Cambronero J (2013) A GEF-to-phospholipase molecular switch caused by phosphatidic acid, Rac and JAK tyrosine kinase that explains leukocyte cell migration. J Cell Sci 126:1416–1428.  https://doi.org/10.1242/jcs.117960 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zheng Y, Rodrik V, Toschi A, Shi M, Hui L, Shen Y, Foster DA (2006) Phospholipase D couples survival and migration signals in stress response of human cancer cells. J Biol Chem 281:15862–15868.  https://doi.org/10.1074/jbc.M600660200 CrossRefPubMedGoogle Scholar
  46. 46.
    Park MH, Ahn BH, Hong YK, Min do S (2009) Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-kappaB/Sp1-mediated signaling pathways. Carcinogenesis 30:356–365.  https://doi.org/10.1093/carcin/bgn287 CrossRefPubMedGoogle Scholar
  47. 47.
    Knoepp SM, Chahal MS, Xie Y, Zhang Z, Brauner DJ, Hallman MA, Robinson SA, Han S, Imai M, Tomlinson S, Meier KE (2008) Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Mol Pharmacol 74:574–584.  https://doi.org/10.1124/mol.107.040105 CrossRefPubMedGoogle Scholar
  48. 48.
    Kang DW, Choi KY, Min do S (2011) Phospholipase D meets Wnt signaling: a new target for cancer therapy. Cancer Res 71:293–297.  https://doi.org/10.1158/0008-5472.CAN-10-2463 CrossRefPubMedGoogle Scholar
  49. 49.
    Henkels KM, Boivin GP, Dudley ES, Berberich SJ, Gomez-Cambronero J (2013) Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene 32:5551–5562.  https://doi.org/10.1038/onc.2013.207 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sant S, Johnston PA (2017) The production of 3D tumor spheroids for cancer drug discovery. Drug Discov Today Technol 23:27–36.  https://doi.org/10.1016/j.ddtec.2017.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lovitt CJ, Shelper TB, Avery VM (2014) Advanced cell culture techniques for cancer drug discovery. Biology (Basel) 3:345–367.  https://doi.org/10.3390/biology3020345 Google Scholar
  52. 52.
    Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D, Eccles SA (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10:29.  https://doi.org/10.1186/1741-7007-10-29 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Noble AR, Maitland NJ, Berney DM, Rumsby MG (2018) Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation. Br J Cancer 118:189–199.  https://doi.org/10.1038/bjc.2017.391 CrossRefPubMedGoogle Scholar
  54. 54.
    Utter M, Chakraborty S, Goren L, Feuser L, Zhu YS, Foster DA (2018) Elevated phospholipase D activity in androgen-insensitive prostate cancer cells promotes both survival and metastatic phenotypes. Cancer Lett 423:28–35.  https://doi.org/10.1016/j.canlet.2018.03.006 CrossRefPubMedGoogle Scholar
  55. 55.
    Yonezawa T, Katoh K, Obara Y (2004) Existence of GPR40 functioning in a human breast cancer cell line, MCF-7. Biochem Biophys Res Commun 314:805–809CrossRefPubMedGoogle Scholar
  56. 56.
    Miyauchi S, Hirasawa A, Iga T, Liu N, Itsubo C, Sadakane K, Hara T, Tsujimoto G (2009) Distribution and regulation of protein expression of the free fatty acid receptor GPR120. Naunyn Schmiedebergs Arch Pharmacol 379:427–434.  https://doi.org/10.1007/s00210-008-0390-8 CrossRefPubMedGoogle Scholar
  57. 57.
    Liebmann C (2011) EGF receptor activation by GPCRs: an universal pathway reveals different versions. Mol Cell Endocrinol 331:222–231.  https://doi.org/10.1016/j.mce.2010.04.008 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Biologia CelularCinvestav-IPNMexicoMexico
  2. 2.Departamento de Ciencias de la SaludUAM-IztapalapaMexico CityMexico

Personalised recommendations