Advertisement

Molecular and Cellular Biochemistry

, Volume 455, Issue 1–2, pp 7–19 | Cite as

Involvement of ERK1/2 activation in the gene expression of senescence-associated secretory factors in human hepatic stellate cells

  • Naoshi Odagiri
  • Tsutomu MatsubaraEmail author
  • Moe Higuchi
  • Sayuri Takada
  • Hayato Urushima
  • Misako Sato-Matsubara
  • Yuga Teranishi
  • Katsutoshi Yoshizato
  • Norifumi Kawada
  • Kazuo Ikeda
Article

Abstract

Senescent hepatic stellate cells (senescent HSCs) are found in patients with liver cirrhosis and have been thought to be involved in the development of hepatocellular carcinoma (HCC) in mice via the senescence-associated secretory proteins. However, in humans, which secretory proteins are involved and what regulate their expression remain unclear. In the current study, we characterized senescence-associated β-galactosidase-positive senescent human HSCs (hHSCs) induced by repetitive passaging. They exhibited enhanced expression of 14 genes for secretory protein and persistent phosphorylation of ERK1/2 protein but not JNK or p38 MAPK proteins. Enhanced nuclear ERK1/2 phosphorylation was observed in senescent hHSCs. Treatment of the senescent hHSCs with ERK1/2 inhibitor, SCH772984, significantly decreased the levels of angiopoietin like 4 (ANGPTL4), C-C motif chemokine ligand 7 (CCL7), Interleukin-8 (IL-8), platelet factor 4 variant 1 (PF4V1), and TNF superfamily member 15 (TNFSF15) mRNA levels in a dose-dependent manner. The enhanced phosphorylation of ERK1/2 and expression of ANGPTL4, IL-8 and PF4V1 genes were observed in both of senescent human dermal fibroblasts and X-ray-induced senescent hHSCs. However, transient ERK1/2 activation induced by epidermal growth factor could not mimic the gene profile of the senescent hHSCs. These results revealed involvement of ERK1/2 signaling in the regulation of senescence-associated secretory factors, suggesting that simultaneous induction of ANGPTL4, IL-8, and PF4V1 genes is a marker of hHSC senescence. This study will contribute to understanding roles of senescent hHSCs in liver diseases.

Keywords

Hepatic stellate cell Senescence Secretory factor ERK1/2 Fibroblast 

Notes

Acknowledgements

We thank Atsuko Daikoku (Osaka City University), Kenji Kitamura (Osaka City University) and Junko Kawawaki (Research support platform of Osaka City University Graduate School of Medicine) for technical assistance.

Author contributions

NO and TM designed the experiments and interpreted the results. NO, TM, MH, ST, HU, MSM, and YT conducted the experiments and prepared the figures. NO, TM, KY, NK, and KI wrote and revised the manuscript.

Funding

This work was supported by The Uehara Memorial Foundation, The Osaka Medical Research Foundation for Intractable Diseases, The Tokyo Biochemical Research Foundation, The Osaka City University Strategic Research Grant 2016 for young researchers, JSPS KAKENHI Grant Number JP26870501 and JP17K18012, and a Grant for Research Program on Hepatitis from the Japan Agency for Medical Research and Development (AMED) Grant Number 16fk0210104h0001.

Compliance with ethical standards

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Supplementary material

11010_2018_3466_MOESM1_ESM.xlsx (3.4 mb)
Supplementary material 1 (XLSX 3518 kb)

References

  1. 1.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefGoogle Scholar
  2. 2.
    Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740.  https://doi.org/10.1038/nrm2233 CrossRefGoogle Scholar
  3. 3.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602CrossRefGoogle Scholar
  4. 4.
    Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130(2):223–233.  https://doi.org/10.1016/j.cell.2007.07.003 CrossRefGoogle Scholar
  5. 5.
    Parrinello S, Coppe JP, Krtolica A, Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118(Pt 3):485–496.  https://doi.org/10.1242/jcs.01635 CrossRefGoogle Scholar
  6. 6.
    Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98(21):12072–12077.  https://doi.org/10.1073/pnas.211053698 CrossRefGoogle Scholar
  7. 7.
    Liu D, Hornsby PJ (2007) Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 67(7):3117–3126.  https://doi.org/10.1158/0008-5472.CAN-06-3452 CrossRefGoogle Scholar
  8. 8.
    Coppe JP, Boysen M, Sun CH, Wong BJ, Kang MK, Park NH, Desprez PY, Campisi J, Krtolica A (2008) A role for fibroblasts in mediating the effects of tobacco-induced epithelial cell growth and invasion. Mol Cancer Res 6(7):1085–1098.  https://doi.org/10.1158/1541-7786.MCR-08-0062 CrossRefGoogle Scholar
  9. 9.
    Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS (2006) The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66(2):794–802.  https://doi.org/10.1158/0008-5472.CAN-05-1716 CrossRefGoogle Scholar
  10. 10.
    Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14(7):397–411.  https://doi.org/10.1038/nrgastro.2017.38 CrossRefGoogle Scholar
  11. 11.
    Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–667.  https://doi.org/10.1016/j.cell.2008.06.049 CrossRefGoogle Scholar
  12. 12.
    Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V, Lowe SW (2013) Non-cell-autonomous tumor suppression by p53. Cell 153(2):449–460.  https://doi.org/10.1016/j.cell.2013.03.020 CrossRefGoogle Scholar
  13. 13.
    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, Honda K, Ishikawa Y, Hara E, Ohtani N (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101.  https://doi.org/10.1038/nature12347 CrossRefGoogle Scholar
  14. 14.
    Saito N, Adachi H, Tanaka H, Nakata S, Kawada N, Oofusa K, Yoshizato K (2017) Interstitial fluid flow-induced growth potential and hyaluronan synthesis of fibroblasts in a fibroblast-populated stretched collagen gel culture. Biochim Biophys Acta 1861(9):2261–2273.  https://doi.org/10.1016/j.bbagen.2017.06.019 CrossRefGoogle Scholar
  15. 15.
    Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5(2):187–195.  https://doi.org/10.1111/j.1474-9726.2006.00199.x CrossRefGoogle Scholar
  16. 16.
    Johmura Y, Shimada M, Misaki T, Naiki-Ito A, Miyoshi H, Motoyama N, Ohtani N, Hara E, Nakamura M, Morita A, Takahashi S, Nakanishi M (2014) Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell 55(1):73–84.  https://doi.org/10.1016/j.molcel.2014.05.003 CrossRefGoogle Scholar
  17. 17.
    Ebert R, Benisch P, Krug M, Zeck S, Meissner-Weigl J, Steinert A, Rauner M, Hofbauer L, Jakob F (2015) Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells. Stem Cell Res 15(1):231–239.  https://doi.org/10.1016/j.scr.2015.06.008 CrossRefGoogle Scholar
  18. 18.
    Freund A, Laberge RM, Demaria M, Campisi J (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23(11):2066–2075.  https://doi.org/10.1091/mbc.E11-10-0884 CrossRefGoogle Scholar
  19. 19.
    Shimi T, Butin-Israeli V, Adam SA, Hamanaka RB, Goldman AE, Lucas CA, Shumaker DK, Kosak ST, Chandel NS, Goldman RD (2011) The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 25(24):2579–2593.  https://doi.org/10.1101/gad.179515.111 CrossRefGoogle Scholar
  20. 20.
    Kim HS, Song MC, Kwak IH, Park TJ, Lim IK (2003) Constitutive induction of p-Erk1/2 accompanied by reduced activities of protein phosphatases 1 and 2A and MKP3 due to reactive oxygen species during cellular senescence. J Biol Chem 278(39):37497–37510.  https://doi.org/10.1074/jbc.M211739200 CrossRefGoogle Scholar
  21. 21.
    Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW (2011) Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev 25(20):2125–2136.  https://doi.org/10.1101/gad.17276711 CrossRefGoogle Scholar
  22. 22.
    Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133(6):1019–1031.  https://doi.org/10.1016/j.cell.2008.03.039 CrossRefGoogle Scholar
  23. 23.
    Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30(8):1536–1548.  https://doi.org/10.1038/emboj.2011.69 CrossRefGoogle Scholar
  24. 24.
    Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A, Georgilis A, Montoya A, Wolter K, Dharmalingam G, Faull P, Carroll T, Martinez-Barbera JP, Cutillas P, Reisinger F, Heikenwalder M, Miller RA, Withers D, Zender L, Thomas GJ, Gil J (2015) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 17(9):1205–1217.  https://doi.org/10.1038/ncb3225 CrossRefGoogle Scholar
  25. 25.
    Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, Campisi J (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17(8):1049–1061.  https://doi.org/10.1038/ncb3195 CrossRefGoogle Scholar
  26. 26.
    Nakayama T, Hirakawa H, Shibata K, Nazneen A, Abe K, Nagayasu T, Taguchi T (2011) Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep 25(4):929–935.  https://doi.org/10.3892/or.2011.1176 CrossRefGoogle Scholar
  27. 27.
    Lee YS, Choi I, Ning Y, Kim NY, Khatchadourian V, Yang D, Chung HK, Choi D, LaBonte MJ, Ladner RD, Nagulapalli Venkata KC, Rosenberg DO, Petasis NA, Lenz HJ, Hong YK (2012) Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Br J Cancer 106(11):1833–1841.  https://doi.org/10.1038/bjc.2012.177 CrossRefGoogle Scholar
  28. 28.
    Quemener C, Baud J, Boye K, Dubrac A, Billottet C, Soulet F, Darlot F, Dumartin L, Sire M, Grepin R, Daubon T, Rayne F, Wodrich H, Couvelard A, Pineau R, Schilling M, Castronovo V, Sue SC, Clarke K, Lomri A, Khatib AM, Hagedorn M, Prats H, Bikfalvi A (2016) Dual roles for CXCL4 chemokines and CXCR3 in angiogenesis and invasion of pancreatic cancer. Cancer Res 76(22):6507–6519.  https://doi.org/10.1158/0008-5472.CAN-15-2864 CrossRefGoogle Scholar
  29. 29.
    Zhu B, Lin N, Zhang M, Zhu Y, Cheng H, Chen S, Ling Y, Pan W, Xu R (2015) Activated hepatic stellate cells promote angiogenesis via interleukin-8 in hepatocellular carcinoma. J Transl Med 13:365.  https://doi.org/10.1186/s12967-015-0730-7 CrossRefGoogle Scholar
  30. 30.
    Li H, Ge C, Zhao F, Yan M, Hu C, Jia D, Tian H, Zhu M, Chen T, Jiang G, Xie H, Cui Y, Gu J, Tu H, He X, Yao M, Liu Y, Li J (2011) Hypoxia-inducible factor 1 alpha-activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin beta1 signaling in human hepatocellular carcinoma. Hepatology 54(3):910–919.  https://doi.org/10.1002/hep.24479 CrossRefGoogle Scholar
  31. 31.
    Wang Y, Gao J, Zhang D, Zhang J, Ma J, Jiang H (2010) New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol 53(1):132–144.  https://doi.org/10.1016/j.jhep.2010.02.027 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Naoshi Odagiri
    • 1
    • 2
  • Tsutomu Matsubara
    • 1
    Email author
  • Moe Higuchi
    • 1
  • Sayuri Takada
    • 1
    • 2
  • Hayato Urushima
    • 1
  • Misako Sato-Matsubara
    • 2
    • 3
  • Yuga Teranishi
    • 2
  • Katsutoshi Yoshizato
    • 3
    • 4
  • Norifumi Kawada
    • 2
  • Kazuo Ikeda
    • 1
  1. 1.Department of Anatomy and Regenerative BiologyOsaka City University Graduate School of MedicineOsakaJapan
  2. 2.Department of HepatologyOsaka City University Graduate School of MedicineOsakaJapan
  3. 3.Endowed Laboratory of Synthetic BiologyOsaka City University Graduate School of MedicineOsakaJapan
  4. 4.Academic Advisor’s Office of PhoenixBio Co. LtdHigashihiroshimaJapan

Personalised recommendations