Advertisement

The impact of aerobic and anaerobic training regimes on blood pressure in normotensive and hypertensive rats: focus on redox changes

  • Biljana Jakovljevic
  • Tamara Nikolic Turnic
  • Nevena Jeremic
  • Jovana Jeremic
  • Jovana Bradic
  • Marko Ravic
  • Vladimir Lj. Jakovljevic
  • Djordje Jelic
  • Dragan Radovanovic
  • Olga Pechanova
  • Vladimir Zivkovic
Article
  • 125 Downloads

Abstract

This study was aimed to assess the impact of aerobic and anaerobic type of exercise on blood pressure and redox status in normotensive and hypertensive rats. After 1 week of preconditioning feeding and 1 week of preconditioning running regimen, Wistar albino rats (n = 72; bw: 270 ± 50 g) were randomly assigned to three groups according to running protocol (high-intensity interval training (HIIT) or moderate-intensity training (MIT)): sedentary control, MIT, HIIT; spontaneous hypertensive sedentary control (SHR), SHR + MIT and SHR + HIIT. Blood pressure (BP) measurement was performed by a tail-cuff noninvasive method BP system. After 48 h of rest following the final training, the rats were fasted for 24 h and sacrificed under ketamine/xylazine anesthesia and blood samples were collected. The level of the next prooxidants were measured: superoxide anion radical (O2); hydrogen peroxide (H2O2); nitrite level (NO2) and index of lipid peroxidation (thiobarbituric acid reactive substances), and the activity of antioxidative enzymes: reduced glutathione (GSH) superoxide dismutase (SOD) and catalase (CAT) activity. After the last week of running, HIIT strongly affected SP, DP, and HR in SHR rats compared to other hypertensive rats, as well as after MIT in normotensive conditions. We have found that HIIT training protocol induced a higher increase of O2 and H2O2 as compared to MIT. Findings of the present study pointed out that contrary to normotensive conditions, in hypertensive conditions both training regimes reduced the BP levels, which was more prominent in case of HIIT. In addition, MIT seems to be connected with milder disturbance of pro-oxidant production and better antioxidant response.

Keywords

Hypertension HIIT MIT Heart Redox status Rat 

Notes

Acknowledgements

This work was supported by Faculty of Medical Sciences, University of Kragujevac, Serbia (JP 01/15).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Oxidative stress (2018) role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 9(24):17181–17198.  https://doi.org/10.18632/oncotarget.24729 CrossRefGoogle Scholar
  2. 2.
    Farah BQ, Germano-Soares AH, Rodrigues SLC, Santos CX, Barbosa SS, Vianna LC, Cornelissen VA, Ritti-Dias RM (2017) Acute and chronic effects of isometric handgrip exercise on cardiovascular variables in hypertensive patients: a systematic review. Sports (Basel) 5(3). E55.  https://doi.org/10.3390/sports5030055 CrossRefGoogle Scholar
  3. 3.
    Hakansson S, Jones MD, Ristov M, Marcos L, Clark T, Ram A, Morey R, Franklin A, McCarthy C, Carli L, Ward R, Keech A (2018) Intensity-dependent effects of aerobic training on pressure pain threshold in overweight males: a randomised trial. Eur J Pain.  https://doi.org/10.1002/ejp.1277 CrossRefPubMedGoogle Scholar
  4. 4.
    O’Driscoll JM, Wright SM, Taylor KA, Coleman DA, Sharma R, Wiles JD (1985) Cardiac autonomic and left ventricular mechanics following high intensity interval training: a randomised cross-over controlled study. J Appl Physiol.  https://doi.org/10.1152/japplphysiol.00056.2018 CrossRefGoogle Scholar
  5. 5.
    Li FH, Li T, Ai JY, Sun L, Min Z, Duan R, Zhu L, Liu YY, Liu TC (2018) Beneficial autophagic activities, mitochondrial function, and metabolic phenotype adaptations promoted by high-intensity interval training in a rat model. Front Physiol 9:571.  https://doi.org/10.3389/fphys.2018.00571 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Costa EC, Hay JL, Kehler DS, Boreskie KF, Arora RC, Umpierre D, Szwajcer A, Duhamel TA (2018) Effects of high-intensity interval training versus moderate-intensity continuous training on blood pressure in adults with pre- to established hypertension: a systematic review and meta-analysis of randomized trials. Sports Med.  https://doi.org/10.1007/s40279-018-0944-y CrossRefPubMedGoogle Scholar
  7. 7.
    Green DJ, Eijsvogels T, Bouts YM, Maiorana AJ, Naylor LH, Scholten RR, Spaanderman ME, Pugh CJ, Sprung VS, Schreuder T, Jones H, Cable T, Hopman MT, Thijssen DH (2014) Exercise training and artery function in humans: nonresponse and its relationship to cardiovascular risk factors. J Appl Physiol 117(4):345–352.  https://doi.org/10.1152/japplphysiol.00354.2014 CrossRefPubMedGoogle Scholar
  8. 8.
    González-Ruíz K, Correa-Bautista JE, Izquierdo M, García-Hermoso A, Dominguez-Sanchez MA, Bustos-Cruz RH, García-Prieto JC, Martínez-Vizcaíno V, Lobelo F, González-Jiménez E, Prieto-Benavides DH, Tordecilla-Sanders A, Schmidt-RioValle J, Perez G, Ramírez-Vélez R (2018) Effects of an exercise program on hepatic metabolism, hepatic fat, and cardiovascular health in overweight/obese adolescents from Bogotá, Colombia (the HEPAFIT study): study protocol for a randomized controlled trial. Trials 19(1):330.  https://doi.org/10.1186/s13063-018-2721-5 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sharman JE, La Gerche A, Coombes JS (2015) Exercise and cardiovascular risk in patients with hypertension. Am J Hypertens 28(2):147–158.  https://doi.org/10.1093/ajh/hpu191 CrossRefPubMedGoogle Scholar
  10. 10.
    Diaz KM, Shimbo D (2013) Physical activity and the prevention of hypertension. Curr Hypertens Rep 15(6):659–668.  https://doi.org/10.1007/s11906-013-0386-8 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Agnoletti D (2018) The aerobic exercise training in hypertension: a matter of baking ingredients. J Hypertens 36(8):1651–1653.  https://doi.org/10.1097/HJH.0000000000001776 CrossRefPubMedGoogle Scholar
  12. 12.
    Feng M, Whitesall S, Zhang Y, Beibel M, D’Alecy L, DiPetrillo K (2008) Validation of volume-pressure recording tail-cuff blood pressure measurements. Am J Hypertens 21(12):1288–1291.  https://doi.org/10.1038/ajh.2008.301 CrossRefPubMedGoogle Scholar
  13. 13.
    Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenvvald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 123–132.  https://doi.org/10.12691/jnh-5-1-2 CrossRefGoogle Scholar
  14. 14.
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138. https://doi.org/10.1016/0003-2697(82)90118-XCrossRefGoogle Scholar
  15. 15.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358 doi: 0003-2697(79)90738-3CrossRefGoogle Scholar
  16. 16.
    Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888PubMedGoogle Scholar
  17. 17.
    Beutler E (1984) Superoxide dismutase. In: Beutler E (ed) Red cell metabolism. a manual of biochemical methods. Grune & Stratton: Philadelphia, pp 83–85Google Scholar
  18. 18.
    Aebi H (1984) Catalase in vitro. Methods Enzymol. 105:121–126CrossRefGoogle Scholar
  19. 19.
    Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA (2004) American College of Sports Medicine. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc 36(3):533–553CrossRefGoogle Scholar
  20. 20.
    Libonati JR, Sabri A, Xiao C, MacDonnell SM, Renna BF (2011) Exercise training improves systolic function in hypertensive myocardium. J Appl Physiol 11(6):1637–1643.  https://doi.org/10.1152/japplphysiol.00292.2011 CrossRefGoogle Scholar
  21. 21.
    Carneiro-Júnior MA, Quintão-Júnior JF, Drummond LR, Lavorato VN, Drummond FR, Amadeu MA (2014) Effect of exercise training on Ca2+ release units of left ventricular myocytes of spontaneously hypertensive rats. Braz J Med Biol Res 47(11):960–965CrossRefGoogle Scholar
  22. 22.
    Carneiro-Júnior MA, Quintão-Júnior JF, Drummond LR, Lavorato VN, Drummond FR, da Cunha DN (2013) The benefits of endurance training in cardiomyocyte function in hypertensive rats are reversed within four weeks of detraining. J Mol Cell Cardiol 57:119–128.  https://doi.org/10.1016/j.yjmcc.2013.01.013 CrossRefPubMedGoogle Scholar
  23. 23.
    Wang N, Liu Y, Ma Y, Wen D (2017) High-intensity interval versus moderate-intensity continuous training: superior metabolic benefits in diet-induced obesity mice. Life Sci 191:122–131.  https://doi.org/10.1016/j.lfs.2017.08.023 CrossRefGoogle Scholar
  24. 24.
    Pingitore A, Lima GPP, Mastorci F, Quinones A, Iervasi G, Vassalle C (2015) Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31(7–8):916–922.  https://doi.org/10.1016/j.nut.2015.02.005 CrossRefGoogle Scholar
  25. 25.
    Aro CEP, Guzmán JAR, Muñoz MES, González BEV (2015) Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave 15(7):1–13.  https://doi.org/10.5867/medwave.2015.07.6212 CrossRefGoogle Scholar
  26. 26.
    Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS (2015) The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med 45(5):679–692.  https://doi.org/10.1007/s40279-015-0321-z CrossRefGoogle Scholar
  27. 27.
    Finkler M, Lichtenberg D, Pinchuk I (2014) The relationship between oxidative stress and exercise. J Basic Clin Physiol Pharmacol 25(1):1–11.  https://doi.org/10.1515/jbcpp-2013-0082 CrossRefPubMedGoogle Scholar
  28. 28.
    Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255.  https://doi.org/10.1038/sj.bjp.0705776 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Steinbacher P, Eckl P (2015) Impact of oxidative stress on exercising skeletal muscle. Biomolecules 5(2):356–377.  https://doi.org/10.3390/biom5020356 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wewege M, van den Berg R, Ward RE, Keech A (2017) The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev 18(6):635–646.  https://doi.org/10.1111/obr.12532 CrossRefPubMedGoogle Scholar
  31. 31.
    Covas MI, Elosua R, Fitó M, Alcántara M, Coca L, Marrugat J (2002) Relationship between physical activity and oxidative stress biomarkers in women. Med Sci Sports Exerc 34(5):814–819CrossRefGoogle Scholar
  32. 32.
    Criswell D, Powers S, Dodd S, Lawler J, Edwards W, Renshler K (1993) High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc 25:1135–1140.  https://doi.org/10.1249/00005768-199310000-00009 CrossRefGoogle Scholar
  33. 33.
    Garciarena CD, Pinilla OA, Nolly MB, Laguens RP, Escudero EM, Cingolani HE (2009) Endurance training in the spontaneously hypertensive rat: conversion of pathological into physiological cardiac hypertrophy. Hypertension 53(4):708–714.  https://doi.org/10.1161/HYPERTENSIONAHA.108.126805 CrossRefPubMedGoogle Scholar
  34. 34.
    Delwing-de Lima D, Ulbricht ASSF, Werlang-Coelho C, Delwing-Dal Magro D, Joaquim VHA, Salamaia EM, de Quevedo SR, Desordi L (2017) Effects of two aerobic exercise training protocols on parameters of oxidative stress in the blood and liver of obese rats. J Physiol Sci.  https://doi.org/10.1007/s12576-017-0584-2 CrossRefGoogle Scholar
  35. 35.
    Safarimosavi S, Mohebbi H, Rohani H (2018) High-intensity Interval vs. continuous endurance training: preventive effects on hormonal changes and physiological adaptations in prediabetes patients. J Strength Cond Res.  https://doi.org/10.1519/JSC.0000000000002709 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Biljana Jakovljevic
    • 1
  • Tamara Nikolic Turnic
    • 2
  • Nevena Jeremic
    • 2
  • Jovana Jeremic
    • 2
  • Jovana Bradic
    • 2
  • Marko Ravic
    • 2
  • Vladimir Lj. Jakovljevic
    • 3
    • 4
  • Djordje Jelic
    • 5
  • Dragan Radovanovic
    • 6
  • Olga Pechanova
    • 7
  • Vladimir Zivkovic
    • 3
  1. 1.Medical College of Applied Sciences in ZemunBelgradeSerbia
  2. 2.Department of Pharmacy, Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia
  3. 3.Department of Physiology, Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia
  4. 4.Department of Human Pathology1st Moscow State Medical, University IM SechenovMoscowRussian Federation
  5. 5.Faculty of Stomatology in PancevoUniversity Business Academy Novi SadNovi SadSerbia
  6. 6.Department of Physiology, Faculty of Sport and Physical EducationUniversity of NisNisSerbia
  7. 7.Instutute of Normal and Pathological PhysiologySlovac Academy of SciencesBratislavaSlovakia

Personalised recommendations