Advertisement

Molecular and Cellular Biochemistry

, Volume 452, Issue 1–2, pp 141–152 | Cite as

Mangiferin attenuates cisplatin-induced acute kidney injury in rats mediating modulation of MAPK pathway

  • Anil Kumar Sahu
  • Vipin Kumar Verma
  • Ekta Mutneja
  • Salma Malik
  • Tapas Chandra Nag
  • Amit Kumar Dinda
  • Dharamvir Singh Arya
  • Jagriti BhatiaEmail author
Article
  • 128 Downloads

Abstract

Cisplatin has been confined due to the reported cases of nephrotoxicity. In the present study, an active xanthone, Mangiferin (from Mangifera indica) was investigated for its defensive role in cisplatin-induced nephrotoxicity. Male wistar albino rats were divided into six groups i.e., group 1 (normal); group 2 (cisplatin control); group 3, 4, and 5 (mangiferin 10, 20, and 40 mg/kg, i.p.); and per se (40 mg/kg; i.p.). The treatment was given for 10 days. On day 7, single dose of cisplatin 8 mg/kg i.p. was administered to induce nephrotoxicity in all groups except normal and per se. On day 11, animals were anesthetized, blood was taken from heart and serum was separated. Thereafter, rats were sacrificed and kidneys were isolated and preserved for histopathological, ultrastructural, immunohistochemical, and western blot analysis. Cisplatin control group showed significant impairment in renal function due to increased inflammation and oxidative stress which was also confirmed by histopathology and MAPK pathway proteins expression. However, pretreatment with mangiferin 20 and 40 mg/kg significantly reversed the renal function along with the structural changes and the levels of antioxidants. Mangiferin treatment attenuated DNA damage and apoptotic pathway.

Keywords

Mangiferin Cisplatin Nephrotoxicity Inflammation Oxidative stress Apoptosis 

Notes

Acknowledgements

We are thankful to all technical staff for their assistance during the study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7(8):573–584.  https://doi.org/10.1038/nrc2167 Google Scholar
  2. 2.
    Barabas K, Milner R, Lurie D, Adin C (2008) Cisplatin: a review of toxicities and therapeutic applications. Vet Comp Oncol 6(1):1–8.  https://doi.org/10.1111/j.1476-5829.2007.00142 Google Scholar
  3. 3.
    Sastry J, Kellie SJ (2005) Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol 22(5):441–445.  https://doi.org/10.1080/08880010590964381 Google Scholar
  4. 4.
    Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73(9):994–1007.  https://doi.org/10.1038/sj.ki.5002786 Google Scholar
  5. 5.
    Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of cisplatin nephrotoxicity. Toxins 2(11):2490–2518.  https://doi.org/10.3390/toxins2112490 Google Scholar
  6. 6.
    Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124.  https://doi.org/10.1097/MAJ.0b013e31812dfe1e Google Scholar
  7. 7.
    Kuhlmann MK, Burkhardt G, Köhler H (1997) Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 12(12):2478–2480.  https://doi.org/10.1093/ndt/12.12.247 Google Scholar
  8. 8.
    Malik S, Bhatia J, Suchal K, Gamad N, Dinda AK, Gupta YK, Arya DS (2015) Nobiletin ameliorates cisplatin-induced acute kidney injury due to its anti-oxidant, anti-inflammatory and anti-apoptotic effects. Exp Toxicol Pathol 67(7):427–433.  https://doi.org/10.1016/j.etp.2015.04.008 Google Scholar
  9. 9.
    Oh GS, Kim HJ, Shen A, Lee SB, Khadka D, Pandit A, So HS (2014) Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies. Electrolyte Blood Press 12(2):55–65.  https://doi.org/10.5049/EBP.2014.12.2.55 Google Scholar
  10. 10.
    Clark JS, Faisal A, Baliga R, Nagamine Y, Arany I (2010) Cisplatin induces apoptosis through the ERK-p66shc pathway in renal proximal tubule cells. Cancer Lett 297(2):165–170.  https://doi.org/10.1016/j.canlet.2010.05.007 Google Scholar
  11. 11.
    Imran M, Arshad MS, Butt MS, Kwon JH, Arshad MU, Sultan MT (2017) Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis 16(1):84.  https://doi.org/10.1186/s12944-017-0449-y Google Scholar
  12. 12.
    Garrido G, Gonzalez D, Lemus Y, Garcıa D, Lodeiro L, Quintero G, Delporte C, Nunez-Selles AJ, Delgado R (2004) In vivo and in vitro anti-inflammatory activity of Mangifera indica L. extract (VIMANG®). Pharmacol Res 50(2):143–149.  https://doi.org/10.1016/j.phrs.2003.12.003 Google Scholar
  13. 13.
    Khurana RK, Kaur R, Lohan S, Singh KK, Singh B (2016) Mangiferin: a promising anticancer bioactive. Pharm Pat Anal 5(3):169–181.  https://doi.org/10.4155/ppa-2016-0003 Google Scholar
  14. 14.
    Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, Kumari S, Ojha S, Arya DS (2017) Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: role of AGE-RAGE/MAPK pathways. Sci Rep. 7:42027.  https://doi.org/10.1038/srep42027 Google Scholar
  15. 15.
    Ding LZ, Teng X, Zhang ZB, Zheng CJ, Chen SH (2018) Mangiferin inhibits apoptosis and oxidative stress via BMP2/Smad-1 signaling in dexamethasone-induced MC3T3-E1 cells. Int J Mol Med 41(5):2517–2526.  https://doi.org/10.3892/ijmm.2018.3506 Google Scholar
  16. 16.
    Wang H, He X, Lei T, Liu Y, Huai G, Sun M, Deng S, Yang H, Tong R, Wang Y (2018) Mangiferin induces islet regeneration in aged mice through regulating p16INK4a. Int J Mol Med 41(6):3231–3242.  https://doi.org/10.3892/ijmm.2018.3524 Google Scholar
  17. 17.
    Marquez L, Garcia-Bueno B, Madrigal JL, Leza JC (2012) Mangiferin decreases inflammation and oxidative damage in rat brain after stress. Eur J Nutr 51(6):729–739.  https://doi.org/10.1007/s00394-011-0252-x Google Scholar
  18. 18.
    Jeong JJ, Jang SE, Hyam SR, Han MJ, Kim DH (2014) Mangiferin ameliorates colitis by inhibiting IRAK1 phosphorylation in NF-κB and MAPK pathways. Eur J Pharmacol 740:652–661.  https://doi.org/10.1016/j.ejphar.2014.06.013 Google Scholar
  19. 19.
    Malik S, Suchal K, Gamad N, Dinda AK, Arya DS, Bhatia J (2015) Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis. Eur J Pharmacol 748:54–60.  https://doi.org/10.1016/j.ejphar.2014.12.008 Google Scholar
  20. 20.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358.  https://doi.org/10.1016/0003-2697(79)90738-3 Google Scholar
  21. 21.
    Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582(1):67–78.  https://doi.org/10.1016/0304-4165(79)90289-7 Google Scholar
  22. 22.
    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474.  https://doi.org/10.1111/j.1432-1033.1974.tb03714.x Google Scholar
  23. 23.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126.  https://doi.org/10.1016/S0076-6879(84)05016-3 Google Scholar
  24. 24.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 Google Scholar
  25. 25.
    Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J (2005) Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol 97(3):497–501.  https://doi.org/10.1016/j.jep.2004.12.010 Google Scholar
  26. 26.
    Prabhu S, Jainu M, Sabitha KE, Devi CS (2006) Role of mangiferin on biochemical alterations and antioxidant status in isoproterenol-induced myocardial infarction in rats. J Ethnopharmacol 107(1):126–133.  https://doi.org/10.1016/j.jep.2006.02.014 Google Scholar
  27. 27.
    Luo Y, Fu C, Wang Z, Zhang Z, Wang H, Liu Y (2015) Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl-2 and Bax pathway. Mol Med Rep 12(5):7132–7138.  https://doi.org/10.3892/mmr.2015.4274 Google Scholar
  28. 28.
    Pal PB, Sinha K, Sil PC (2013) Mangiferin, a natural xanthone, protects murine liver in Pb(II) induced hepatic damage and cell death via MAP kinase, NF-κB and mitochondria dependent pathways. PLoS ONE 25(2):e56894.  https://doi.org/10.1371/journal.pone.0056894 8) .Google Scholar
  29. 29.
    Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Perez JM (2007) Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 7(1):3–18.  https://doi.org/10.2174/187152007779314044 Google Scholar
  30. 30.
    Sancho-Martinez SM, Prieto-Garcia L, Prieto M, Lopez-Novoa JM, Lopez-Hernandez FJ (2012) Subcellular targets of cisplatin cytotoxicity: an integrated view. Pharmacol Ther 136(1):35–55.  https://doi.org/10.1016/j.pharmthera.2012.07.003 Google Scholar
  31. 31.
    Townsend DM, Hanigan MH (2002) Inhibition of γ-glutamyl transpeptidase or cysteineS-conjugate β-lyase activity blocks the nephrotoxicity of cisplatin in mice. J Pharmacol Exp Ther 300(1):142–148.  https://doi.org/10.1124/jpet.300.1.142 Google Scholar
  32. 32.
    Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, Wang Y, Huang Z, Ren J, Liu S, Chen X (2015) A role for tubular necroptosis in cisplatin-induced AKI. J Am Soc Nephrol.  https://doi.org/10.1681/ASN.2014080741 Google Scholar
  33. 33.
    Quesada A, Vargas F, Montoro-Molina S, O’Valle F, Rodríguez-Martínez MD, Osuna A, Prieto I, Ramírez M, Wangensteen R (2012) Urinary aminopeptidase activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. PLoS ONE 7(7):e40402.  https://doi.org/10.1371/journal.pone.0040402 Google Scholar
  34. 34.
    Changizi-Ashtiyani S, Alizadeh M, Najafi H, Babaei S, Khazaei M, Jafari M, Hossaini N, Avan A, Bastani B (2016) Physalis alkekengi and Alhagi maurorum ameliorate the side effect of cisplatin-induced nephrotoxicity. Cancer Gene Ther 23(7):235.  https://doi.org/10.1038/cgt.2016.24 Google Scholar
  35. 35.
    Hurabielle C, Pillebout E, Stehle T, Pages C, Roux J, Schneider P, Chevret S, Chaffaut C, Boutten A, Mourah S, Basset-Seguin N (2016) Mechanisms underpinning increased plasma creatinine levels in patients receiving vemurafenib for advanced melanoma. PLoS ONE 11(3):e0149873.  https://doi.org/10.1371/journal.pone.0149873 Google Scholar
  36. 36.
    Matsushima H, Yonemura K, Ohishi K, Hishida A (1998) The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J Lab Clin Med 131(6):518–526.  https://doi.org/10.1016/S0022-2143(98)90060-9 Google Scholar
  37. 37.
    Cheng TC, Hsu YW, Lu FJ, Chen YY, Tsai NM, Chen WK, Tsai CF (2017) Nephroprotective effect of electrolyzed reduced water against cisplatin-induced kidney toxicity and oxidative damage in mice. J Chin Med Assoc 81(2):119–126.  https://doi.org/10.1016/j.jcma.2017.08.014 Google Scholar
  38. 38.
    Sharma S, Joshi A, Hemalatha S (2017) Protective effect of Withania coagulans fruit extract on cisplatin-induced nephrotoxicity in rats. Pharmacogn Res 9(4):354.  https://doi.org/10.4103/pr.pr_1_17 Google Scholar
  39. 39.
    Yilmaz HR, Iraz M, Sogut S, Ozyurt H, Yildirim Z, Akyol O, Gergerlioglu S (2004) The effects of erdosteine on the activities of some metabolic enzymes during cisplatin-induced nephrotoxicity in rats. Pharmacol Res 50(3):287–290.  https://doi.org/10.1016/j.phrs.2004.03.003 Google Scholar
  40. 40.
    Kawai Y, Nakao T, Kunimura N, Kohda Y, Gemba M (2006) Relationship of intracellular calcium and oxygen radicals to cisplatin-related renal cell injury. J Pharmacol Sci 100(1):65–72.  https://doi.org/10.1254/jphs.FP0050661 Google Scholar
  41. 41.
    Badary OA, Abdel-Maksoud S, Ahmed WA, Owieda GH (2005) Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci 76(18):2125–2135.  https://doi.org/10.1016/j.lfs.2004.11.005 Google Scholar
  42. 42.
    Chirino YI, Hernandez-Pando R, Pedraza-Chaverrí J (2004) Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats. BMC Pharmacol 4(1):20.  https://doi.org/10.1186/1471-2210-4-20 Google Scholar
  43. 43.
    Martınez G, Delgado R, Pérez G, Garrido G, Nunez-Selles AJ, Leon OS (2000) Evaluation of the in vitro antioxidant activity of Mangifera indica L. extract (Vimang). Phytother Res. 14:424–427.  https://doi.org/10.1002/1099-1573(200009)14:6%3C424::AID-PTR643%3E3.0.CO;2-8 Google Scholar
  44. 44.
    Dar A, Faizi S, Naqvi S, Roome T, Zikr-ur-Rehman S, Ali M, Firdous S, Moin ST (2005) Analgesic and antioxidant activity of mangiferin and its derivatives: the structure activity relationship. Biol Pharm Bull 28(4):596–600.  https://doi.org/10.1248/bpb.28.596 Google Scholar
  45. 45.
    Rivera DG, Balmaseda IH, Leon AA, Hernandez BC, Montiel LM, Garrido GG, Hernandez RD, Cuzzocrea S (2006) Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin. J Pharm Pharmacol 58(3):385–392.  https://doi.org/10.1211/jpp.58.3.0014 Google Scholar
  46. 46.
    Saha S, Sadhukhan P, Sil PC (2016) Mangiferin: A xanthonoid with multipotent anti-inflammatory potential. Biofactors 42(5):459–474.  https://doi.org/10.1002/biof.1292 Google Scholar
  47. 47.
    Castellani P, Balza E, Rubartelli A (2014) Inflammation, DAMPs, tumor development, and progression: a vicious circle orchestrated by redox signaling. Antioxid Redox Signal 20(7):1086–1097.  https://doi.org/10.1089/ars.2012.5164 Google Scholar
  48. 48.
    Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167.  https://doi.org/10.1089/ars.2012.5149 Google Scholar
  49. 49.
    Zhang B, Ramesh G, Norbury CC, Reeves WB (2007) Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-α produced by renal parenchymal cells. Kidney Int 72(1):37–44.  https://doi.org/10.1038/sj.ki.5002242 Google Scholar
  50. 50.
    Guerrero-Beltran CE, Mukhopadhyay P, Horvath B, Rajesh M, Tapia E, García-Torres I, Pedraza-Chaverri J, Pacher P (2012) Sulforaphane, a natural constituent of broccoli, prevents cell death and inflammation in nephropathy. J Nutr Biochem 23(5):494–500.  https://doi.org/10.1016/j.jnutbio.2011.02.004 Google Scholar
  51. 51.
    Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA, Baldwin AS, Makarov SS (1998) NF-κB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA 95(23):13859–13864.  https://doi.org/10.1073/pnas.95.23.13859 Google Scholar
  52. 52.
    Poynter ME, Irvin CG, Janssen-Heininger YM (2002) Rapid activation of nuclear factor-κB in airway epithelium in a murine model of allergic airway inflammation. Am J Pathol 160(4):1325–1334.  https://doi.org/10.1016/S0002-9440(10)62559-X Google Scholar
  53. 53.
    Benedetti G, Fredriksson L, Herpers B, Meerman J, van de Water B, de Graauw M (2013) TNF-α-mediated NF-κB survival signaling impairment by cisplatin enhances JNK activation allowing synergistic apoptosis of renal proximal tubular cells. Biochem Pharmacol 85(2):274–286.  https://doi.org/10.1016/j.bcp.2012.10.012 Google Scholar
  54. 54.
    Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109(2):S81–S96.  https://doi.org/10.1016/S0092-8674(02)00703-1 Google Scholar
  55. 55.
    Karin M, Lin A (2002) NF-κB at the crossroads of life and death. Nat Immunol 3(3):221–227.  https://doi.org/10.1038/ni0302-221 Google Scholar
  56. 56.
    Sahu BD, Kumar JM, Sistla R (2015) Baicalein, a bioflavonoid, prevents cisplatin-induced acute kidney injury by up-regulating antioxidant defenses and down-regulating the MAPKs and NF-κB pathways. PLoS ONE 10(7):e0134139.  https://doi.org/10.1371/journal.pone.0134139 Google Scholar
  57. 57.
    Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69(1):217–245.  https://doi.org/10.1146/annurev.biochem.69.1.217 Google Scholar
  58. 58.
    Lee RH, Song JM, Park MY, Kang SK, Kim YK, Jung JS (2001) Cisplatin-induced apoptosis by translocation of endogenous Bax in mouse collecting duct cells. Biochem Pharmacol 62(8):1013–1023.  https://doi.org/10.1016/S0006-2952(01)00748-1 Google Scholar
  59. 59.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219.  https://doi.org/10.1016/S0092-8674(04)00046-7 Google Scholar
  60. 60.
    Mahmoud-Awny M, Attia AS, Abd-Ellah MF, El-Abhar HS (2015) Mangiferin mitigates gastric ulcer in ischemia/reperfused rats: involvement of PPAR-γ, NF-κB and Nrf2/HO-1 signaling pathways. PLoS ONE 10(7):e0132497.  https://doi.org/10.1371/journal.pone.0132497 Google Scholar
  61. 61.
    Saha S, Sadhukhan P, Sinha K, Agarwal N, Sil PC (2016) Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways. Biochem Biophys Rep 5:313–327.  https://doi.org/10.1016/j.bbrep.2016.01.011 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anil Kumar Sahu
    • 1
  • Vipin Kumar Verma
    • 1
  • Ekta Mutneja
    • 1
  • Salma Malik
    • 1
  • Tapas Chandra Nag
    • 2
  • Amit Kumar Dinda
    • 3
  • Dharamvir Singh Arya
    • 1
  • Jagriti Bhatia
    • 1
    Email author
  1. 1.Department of Pharmacology, Cardiovascular Research LaboratoryAll India Institute of Medical SciencesNew DelhiIndia
  2. 2.Department of AnatomyAll India Institute of Medical SciencesNew DelhiIndia
  3. 3.Department of PathologyAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations