Basement membrane extract attenuates the more malignant gene expression profile accentuated by fibronectin in prostate cancer cells

  • Bruno Martinucci
  • Brenda de Carvalho Minatel
  • Maira Smaniotto Cucielo
  • Mariana Medeiros
  • Ivan José Vechetti-Junior
  • Sérgio Luis Felisbino
  • Flávia Karina Delella


Prostate cancer (PCa) has high mortality rates, with most of the deaths resulting from the development of metastasis. Fibronectin (FN) plays key roles in cell adhesion and affects the migratory behavior of cells. In the tumor microenvironment and also in the blood plasma during metastasis, FN displays increased expression, however its role in prostate cancer remains poorly understood. This study aimed to unveil the specific roles of FN as a soluble component, alone or in combination with a complex basement membrane. To investigate the impact of FN in neoplastic prostate cells, we evaluated the gene expression of LNCaP cells by RT-qPCR after exposure to soluble FN (25 µg/mL) either alone or in combination with a basement membrane. When FN was the predominant matrix element, such as in blood plasma, PCa tumor cells increased their expression of genes related to an invasive behavior and resistance to apoptosis, including CDH2, ITGA5, AKT1, and BCL2. However, the combined presence of FN and a complex basement membrane had the opposite effect on LNCaP cells, in which the expression levels of CDH2, ITGA5, AKT1, and BCL2 were reduced. Hierarchical clustering analysis with LNCaP and RWPE-1 cells showed that LNCaP cells exposed to an enriched extracellular matrix displayed an expression pattern more similar to that shown by RWPE-1 cells, a cell line that illustrates characteristics of the normal prostate epithelium. These findings provide the groundwork for future studies addressing the role of FN in tumor growth, particularly in the context of cancer evolution/progression from a solid primary tumor to a transitory circulating state.


Fibronectin Prostate cancer Integrins Cadherins Metastasis RWPE-1 



This article comprises part of the Master dissertation of BM, supported by FAPESP (São Paulo Research Foundation) funding (#Grants 2014/25702-0 and 2013/26114-2).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest.

Supplementary material

11010_2018_3399_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 KB)
11010_2018_3399_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 KB)
11010_2018_3399_MOESM3_ESM.docx (53 kb)
Supplementary material 3 (DOCX 52 KB)


  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108CrossRefPubMedGoogle Scholar
  2. 2.
    Welch HG, Albertsen PC (2009) Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J Natl Cancer Inst 101:1325–1329CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Brower V (2007) Researchers tackle metastasis, cancer’s last frontier. J Natl Cancer Inst 99:109–111CrossRefPubMedGoogle Scholar
  4. 4.
    Palumbo A, Ferreira LB, Reis de Souza PAVV, Oliveira FL de, Pontes B, Viana NB et al (2012) Extracellular matrix secreted by reactive stroma is a main inducer of pro-tumorigenic features on LNCaP prostate cancer cells. Cancer Lett 321:55–64CrossRefPubMedGoogle Scholar
  5. 5.
    Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379CrossRefPubMedGoogle Scholar
  6. 6.
    Cooper CR, Chay CH, Gendernalik JD, Lee H-L, Bhatia J, Taichman RS et al (2003) Stromal factors involved in prostate carcinoma metastasis to bone. Cancer 97:739–747CrossRefPubMedGoogle Scholar
  7. 7.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jung H-Y, Fattet L, Yang J (2015) Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res 21:962–968CrossRefPubMedGoogle Scholar
  9. 9.
    Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374CrossRefPubMedGoogle Scholar
  10. 10.
    Datta K, Muders M, Zhang H, Tindall DJ (2010) Mechanism of lymph node metastasis in prostate cancer. Future Oncol NIH Public Access 6:823–836CrossRefGoogle Scholar
  11. 11.
    Ye L, Kynaston HG, Jiang WG (2007) Bone metastasis in prostate cancer: molecular and cellular mechanisms. Int J Mol Med 20:103–111PubMedGoogle Scholar
  12. 12.
    Malik G, Knowles LM, Dhir R, Xu S, Yang S, Ruoslahti E et al (2010) Plasma fibronectin promotes lung metastasis by contributions to fibrin clots and tumor cell invasion. Cancer Res 70:4327–4334CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW et al (2005) Platelets and fibrinogen increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105:178–185CrossRefPubMedGoogle Scholar
  14. 14.
    Im JH, Fu W, Wang H, Bhatia SK, Hammer DA, Kowalska MA et al (2004) Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 64:8613–8619CrossRefPubMedGoogle Scholar
  15. 15.
    Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032CrossRefPubMedGoogle Scholar
  16. 16.
    Stathakis NE, Fountas A, Tsianos E (1981) Plasma fibronectin in normal subjects and in various disease states. J Clin Pathol 34:504–508CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang X, Liu S, Hu T, Liu S, He Y, Sun S (2009) Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology 50:490–499CrossRefPubMedGoogle Scholar
  19. 19.
    Kaspar M, Zardi L, Neri D (2006) Fibronectin as target for tumor therapy. Int J Cancer 118:1331–1339CrossRefPubMedGoogle Scholar
  20. 20.
    Barilla ML, Carsons SE (2000) Fibronectin fragments and their role in inflammatory arthritis. Semin Arthritis Rheum 29:252–265CrossRefPubMedGoogle Scholar
  21. 21.
    Janković MM, Kosanović MM (2008) Fibronectin pattern in benign hyperplasia and cancer of the prostate. Dis Markers 25:49–58CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM et al (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43:1809–1818PubMedGoogle Scholar
  23. 23.
    Moroz A, Delella FK, Lacorte LM, Deffune E, Felisbino SL (2013) Fibronectin induces MMP2 expression in human prostate cancer cells. Biochem Biophys Res Commun 430:1319–1321CrossRefPubMedGoogle Scholar
  24. 24.
    Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔC t method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  26. 26.
    Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413CrossRefPubMedGoogle Scholar
  27. 27.
    Zhu ML, Kyprianou N (2010) Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB J 24:769–777CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Strohmeyer N, Bharadwaj M, Costell M, Fässler R, Müller DJ (2017) Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second. Nat Mater 16:1262–1270CrossRefPubMedGoogle Scholar
  29. 29.
    Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132CrossRefPubMedGoogle Scholar
  30. 30.
    Matter ML, Ruoslahti E (2001) A signaling pathway from the alpha5beta1 and alpha (v) beta3 integrins that elevates bcl-2 transcription. J Biol Chem 276:27757–27763CrossRefPubMedGoogle Scholar
  31. 31.
    Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25:65–80CrossRefPubMedGoogle Scholar
  33. 33.
    Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Glentis A, Oertle P, Mariani P, Chikina A, El Marjou F, Attieh Y et al (2017) Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun 8:924CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17:320–329CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ruoslahti E (1984) Fibronectin in cell adhesion and invasion. Cancer Metastasis Rev 3:43–51CrossRefPubMedGoogle Scholar
  37. 37.
    Steel DM, Harris H (1989) The effect of antisense RNA to fibronectin on the malignancy of hybrids between melanoma cells and normal fibroblasts. J Cell Sci 93(Pt 3):515–524PubMedGoogle Scholar
  38. 38.
    Jia D, Entersz I, Butler C, Foty RA (2012) Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells. BMC Cancer 12:94CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pentyala SN, Whyard TC, Waltzer WC, Meek AG, Hod Y (1998) Androgen induction of urokinase gene expression in LNCaP cells is dependent on their interaction with the extracellular matrix. Cancer Lett 130:121–126CrossRefPubMedGoogle Scholar
  40. 40.
    Fornaro M, Plescia J, Chheang S, Tallini G, Zhu Y-M, King M et al (2003) Fibronectin protects prostate cancer cells from tumor necrosis factor-alpha-induced apoptosis via the AKT/survivin pathway. J Biol Chem 278:50402–50411CrossRefPubMedGoogle Scholar
  41. 41.
    Von Au A, Vasel M, Kraft S, Sens C, Hackl N, Marx A et al (2013) Circulating fibronectin controls tumor growth. Neoplasia Neoplasia Press 15:925–938Google Scholar
  42. 42.
    Knowles LM, Malik G, Pilch J (2013) Plasma fibronectin promotes tumor cell survival and invasion through regulation of Tie2. J Cancer 4:383–390CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jennbacken K, Tesan T, Wang W, Gustavsson H, Damber J-E, Welén K (2010) N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocr Relat Cancer 17:469–479CrossRefPubMedGoogle Scholar
  44. 44.
    Chen X, Sievers E, Hou Y, Park R, Tohme M, Bart R et al (2005) Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia 7:271–279CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Schneider JG, Amend SR, Weilbaecher KN (2011) Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 48:54–65CrossRefPubMedGoogle Scholar
  46. 46.
    Morgan S, Gower (2000) Fibronectin influences cellular proliferation and apoptosis similarly in LNCaP and PC-3 prostate cancer cell lines. Urol Oncol 5:155–159CrossRefPubMedGoogle Scholar
  47. 47.
    Scott G, Cassidy L, Busacco A (1997) Fibronectin suppresses apoptosis in normal human melanocytes through an integrin-dependent mechanism. J Investig Dermatol 108:147–153CrossRefPubMedGoogle Scholar
  48. 48.
    Pullan S, Wilson J, Metcalfe A, Edwards GM, Goberdhan N, Tilly J et al (1996) Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J Cell Sci 109:631–642Google Scholar
  49. 49.
    Bernard D, Pourtier-Manzanedo A, Gil J, Beach DH (2003) Myc confers androgen-independent prostate cancer cell growth. J Clin Investig 112:1724–1731CrossRefPubMedGoogle Scholar
  50. 50.
    Asadi FK, Sharifi R (1995) Effects of sex steroids on cell growth and C-myc oncogene expression in LN-CaP and DU-145 prostatic carcinoma cell lines. Int Urol Nephrol 27:67–80CrossRefPubMedGoogle Scholar
  51. 51.
    Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO et al (1994) Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 54:3929–3933PubMedGoogle Scholar
  52. 52.
    Tomita K, van Bokhoven A, van Leenders GJ, Ruijter ET, Jansen CF, Bussemakers MJ et al (2000) Cadherin switching in human prostate cancer progression. Cancer Res 60:3650–3654PubMedGoogle Scholar
  53. 53.
    Yuan X-J, Whang YE (2002) PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway. Oncogene 21:319–327CrossRefPubMedGoogle Scholar
  54. 54.
    Howlett AR, Petersen OW, Steeg PS, Bissell MJ (1994) A novel function for the nm23–H1 gene: overexpression in human breast carcinoma cells leads to the formation of basement membrane and growth arrest. J Natl Cancer Inst 86:1838–1844CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Dubois C, Dufour R, Daumar P, Aubel C, Szczepaniak C, Blavignac C et al (2017) Development and cytotoxic response of two proliferative MDA-MB-231 and non-proliferative SUM1315 three-dimensional cell culture models of triple-negative basal-like breast cancer cell lines. Oncotarget 8:95316–95331PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kenny PA, Bissell MJ (2003) Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer 107:688–695CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ramos G, de O, Bernardi, Lauxen L, Sant’Ana Filho I, Horwitz M, Lamers AR ML (2016) Fibronectin modulates cell adhesion and signaling to promote single cell migration of highly invasive oral squamous cell carcinoma. PLoS ONE 11:e0151338CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Webber MM, Bello D, Quader S (1996) Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part I. Cell markers and immortalized nontumorigenic cell lines. Prostate 29:386–394CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bruno Martinucci
    • 1
  • Brenda de Carvalho Minatel
    • 1
  • Maira Smaniotto Cucielo
    • 1
  • Mariana Medeiros
    • 1
  • Ivan José Vechetti-Junior
    • 1
  • Sérgio Luis Felisbino
    • 1
  • Flávia Karina Delella
    • 1
  1. 1.Department of MorphologyInstitute of Biosciences of Botucatu – Univ Estadual Paulista (Unesp)BotucatuBrazil

Personalised recommendations